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H I G H L I G H T S  

• Using low-cost sensor data, we predicted hour-specific daily PM2.5 at a 100 m resolution in three U.S. cities. 
• Spatial-temporal kriging models show better performance than non-spatio-temporal machine learning models. 
• Our high-resolution predictions could also facilitate studies on short-term, traffic-based exposure assessment.  
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A B S T R A C T   

We generated PM2.5 predictions at a high spatio-temporal resolution in the Columbus, OH, Denver, CO, and 
Pittsburgh, PA metropolitan areas using low-cost PurpleAir sensor data. We used multiple modeling approaches, 
namely random forest (RF), random forest spatial interpolation (RFSI), space-time regression kriging (STRK), and 
random forest kriging (RFK). We trained separate models for each combination of hour, month, and city to 
predict PM2.5 concentrations at 8 a.m. and 6 p.m. on any specific day at a spatial resolution of 100m. In most 
cases, models that account for the spatio-temporal relationships (e.g., STRK, RFK, RFSI) show better performance 
than non-spatio-temporal machine learning models (e.g., RF). On average, considering all models of all cities, 
RFSI (mean MAE = 1.75, R2 = 0.67) and STRK (mean MAE = 1.74, R2 = 0.63) models perform better than RFK 
models (mean MAE = 2.11, R2 

= 0.59), and STRK has clearest spatial patterns. We found that kriging models, 
especially STRK, are superior in capturing the spatio-temporal relationships and resemble the generic land use 
pattern of the city, while RFSI models are effective when dealing with very large datasets with missing cases. Our 
study demonstrates a multi-model approach that could inform low-cost sensor deployment to facilitate air quality 
modeling. Our high-resolution predictions could also facilitate studies on short-term, traffic-based exposure 
assessment.   

1. Introduction 

Fine particulate matter with an aerodynamic diameter of 2.5 μm or 
less (PM2.5) is associated with high mortality rates and a wide range of 
health issues globally (Apte et al., 2015; Brook et al., 2010; Hu et al., 
2017; Li et al., 2022; McDuffie et al., 2021; Pope and Dockery, 2006). 
Quantifying the health impacts of PM2.5 relies on accurate measurement 
and assessment of PM2.5 exposure (Bi et al., 2020a; Burnett et al., 2014; 
O’Lenick et al., 2017; Sarnat et al., 2015). In the US, PM2.5 concentra-
tions are strongly associated with fuel combustion and emissions from 
the residential, transportation, and energy sectors, which can vary 

within a city (Askariyeh et al., 2020; McDuffie et al., 2021; Weagle et al., 
2018). Hence, fine-grained measurement and estimation of PM2.5 would 
aid in both exposure assessment and the quantification of the short-and 
long-term health impacts of PM2.5 (Liu et al., 2015). 

Air pollution exposures are traditionally measured at home and work 
locations. For this purpose, low-resolution data can serve as a useful 
source to understand the long-term health impacts. However, as more 
efforts transition to dynamic exposure, i.e., understanding the exposure 
level (and disparity) during daily travel as people quickly move across 
space, we observe a rising need for higher-resolution data, both spatially 
and temporally. Without considering this spatial granularity, research 
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results may be subject to biases that over- or underestimate the true 
exposure level of individuals living, working, and traveling in different 
environments with various levels of pollution concentrations (Kim and 
Kwan, 2019; Ma et al., 2020; Park and Kwan, 2017). 

One challenge for developing high-resolution predictions of PM2.5 is 
the lack of granular PM2.5 measurements. In most cases, PM2.5 mea-
surements are obtained from regulatory air quality monitoring stations 
(e.g., the U.S. Environmental Protection Agency (EPA) air quality system 
(AQS) stations) (Heo et al., 2016; Hu et al., 2019a), which are often very 
sparse in space due to the cost and labor (Bi et al., 2020a; Clements and 
Vanderpool, 2019). Low-cost particle sensors, on the other hand, are 
much more affordable than EPA AQS stations (Clements and Vander-
pool, 2019). However, these sensors are often criticized for their reliance 
on a light-scattering technique, which both reduces the accuracy and 
generates more uncertainty in estimated particle mass concentrations, 
compared to reference-grade monitors (Bi et al., 2020a; Hagan and 
Kroll, 2020; He et al., 2020; Morawska et al., 2018; Tryner et al., 2020; 
Zou et al., 2021). Nevertheless, low-cost sensors are growing in popu-
larity. For example, the PurpleAir low-cost sensor network provides both 
outdoor and indoor estimates of different PM concentrations (PM1, 
PM2.5, and PM10), in addition to other environmental parameters such as 
air temperature, relative humidity, and barometric pressure, at a 2-min 
temporal-scale (Bi et al., 2022). The PurpleAir website hosts the recor-
ded datasets and allows data downloading at high spatio-temporal res-
olution (Bi et al., 2020a; Yang et al., 2022). 

Prior studies have developed calibration methods to improve the 
accuracy of low-cost sensor data. Malings et al. (2020) developed two 
types of long-term sensor corrections using 9 PurpleAir sensors (PA-II) 
and 25 Met One Neighborhood Particulate Monitors (NPM). The first 
correction is a physics-based approach, which uses particle composition 
to predict aerosol hygroscopic growth, then adjusts for particle mass 
below the optical sensor size cut-point with respect to the Beta Atten-
uation Monitor. The other correction is based on a statistical approach 
using environmental variables such as temperature (T) and relative 
humidity (RH) (Malings et al., 2020). Similarly, U.S. EPA researchers 
developed a statistical calibration equation to correct PurpleAir sensors, 
using comparisons to AQS monitors and including the PurpleAir’s re-
ported RH values (Barkjohn et al., 2021). PurpleAir sensors generally 
exhibit high inter-unit consistency (r > 0.9) for PM2.5 observations 
(Kelly et al., 2017; Malings et al., 2020; South Coast Air Quality Man-
agement District, 2024). Moreover, while PurpleAir sensors experience 
lower accuracy compared to governmental instruments, two studies in 
the U.S. show a very good association between PurpleAir sensors and the 
AQS monitors (R2 = 0.88 and > 0.90, respectively) (Kelly et al., 2017; 
South Coast Air Quality Management District, 2024). 

In recent years, researchers have demonstrated the use of these 
calibrated low-cost sensor measurements, combined with the appro-
priate spatial and temporal predictors, to generate more accurate PM2.5 
prediction models (Bi et al., 2020b; Reis et al., 2015; Saltelli et al., 
2010). Low-cost sensors deployed by scientists and non-scientist entities 
form a network that, as a whole, is larger in number than sparsely 
distributed regulatory monitors alone. Thus, prediction models designed 
through high volume low-cost sensor datasets can capture more 
spatio-temporal variations, especially among residential locations that 
may be far away from regulatory stations, (Bi et al., 2022) and can yield 
more accurate PM2.5 predictions (Bi et al., 2020a, 2022; Li et al., 2020; 
Lin et al., 2020; Lu et al., 2021a; Schulte et al., 2020) than the models 
generated from regulatory monitors (Kloog et al., 2012, 2014; Lin et al., 
2020). Such accurate predictions are particularly crucial in investigating 
short-term, outdoor, or in-traffic exposure to environmental pollution 
(Reis et al., 2015). 

While low-cost sensors offer valuable high-resolution data, their 
utilization in developing PM2.5 prediction models remains limited to 
only a few U.S.-based studies (Bi et al., 2020a, 2020b, 2022; Jain et al., 
2021; Lu et al., 2021a, 2022; Vu et al., 2022). For example, Lu et al. 
predicted hourly PM2.5 for Los Angeles County with a spatial resolution 

of 500 × 500 m (Lu et al., 2021b). Jain et al. also predicted PM2.5 in 
Pittsburgh, PA, using a 50 × 50 m spatial resolution with an output of 
daily PM2.5 concentrations (Jain et al., 2021). However, these models 
can further be advanced to improve their reliability and granularity to 
enable the prediction of PM2.5 concentrations at any place and time (Liu 
et al., 2022; van Donkelaar et al., 2015; Xie et al., 2015). 

Past studies designed air quality models using either data-driven 
machine learning (ML) or geostatistical modeling approaches. Random 
forest (RF) regression, a tree-based ensemble model, is the most popular 
ML algorithm adopted for PM2.5 predictions (Bi et al., 2020b; Lu et al., 
2021b; Vu et al., 2022), while one study applied neural networks and 
gradient boosting (Di et al., 2019). Prior studies also used various sta-
tistical and geospatial modeling approaches for air quality predictions, 
such as land use regression (LUR) (Kloog et al., 2012; Lee, 2019), 
space-time regression kriging (Hu et al., 2019b), and spatio-temporal 
mixed-effect models (Bi et al., 2022; Kloog et al., 2014; Xie et al., 
2015). Some studies adopted a combined approach of using ML models 
for data processing and imputation and statistical models, e.g., ordinary 
kriging for prediction and visualization (Chang et al., 2020; Li et al., 
2020). However, few studies compared the performances of (geo)sta-
tistical and ML models within the same study. For example, a compar-
ison between LUR and RF showed that the latter model outperforms the 
former (Jain et al., 2021). Another study compared the regression-based 
and ML-based kriging models and found that the ML-geospatial combi-
nation performs better than the traditional kriging (Lu et al., 2021a). 
Thus, while these studies suggested that ML approaches are promising 
for spatio-temporal predictions, further efforts are needed to fully 
explore their performance and potential limitations. 

In this study, we demonstrate applications of low-cost sensor datasets 
in predicting PM2.5 concentrations at a high spatio-temporal resolution. 
Our study overcomes the spatio-temporal limitations of past studies by 
creating prediction surfaces of hour-specific daily PM2.5 concentration at 
100 × 100m resolution using data from 474 PurpleAir sensors across the 
three different U.S. cities, namely the Columbus, OH, Denver, CO, and 
Pittsburgh, PA metropolitan areas. We developed the prediction models 
using both ML and geostatistical methods, namely RF (non-spatial 
model), random forest spatial interpolation (RFSI), random forest space- 
time kriging (RFK), and space-time regression kriging (STRK). This 
application of multiple models using datasets from multiple cities will 
help us understand the differences in model performance for high spatio- 
temporal predictions based on the sensor number, locations, and 
observed datasets from various urban contexts. Moreover, by focusing 
on three different geographic locations, we can establish a model that 
has greater potential to be generalized to most US urban areas with 
similar land use and urban characteristics. 

2. Methods 

2.1. Study area and data 

We obtained data on PM2.5 concentrations from outdoor PurpleAir 
sensors (PurpleAir, 2023) installed in three metropolitan areas in the US: 
Columbus, OH, Denver, CO, and Pittsburgh, PA. The data used in this 
study include hourly PM2.5, T, and RH measures recorded from 48 
sensors in Columbus, 172 sensors in Denver, and 254 sensors in Pitts-
burgh from July 1, 2021 to April 30, 2022. We deployed some of the 
sensors in Columbus for our study, but the remainder were installed by 
other users across all three cities. However, not all these sensors have 
data captured for all date-time stamps used in this study (e.g., some of 
our sensors were not installed until September 2021). We adjusted the 
raw PM2.5 values using the calibration equation established by Barkjohn 
et al. (2021). Prior to deploying our sensors, we conducted a simple 
outdoor comparison study to investigate inter-device agreement (see 
Figures S1 – S2 and Tables S1 – S4). Additionally, we checked the 
percentile distribution of PM2.5 (Table S5) and excluded any data point 
that is greater than 50 μg/m3, suspecting that these are an outcome of 
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instrumental errors or extreme weather events. From a practical stand-
point, these extreme values would be difficult to capture in any pre-
dictive model because their occurrences are likely due to processes that 
a statistical model could not capture (e.g., transport of wildland fire 
smoke). After excluding the outliers above 50 μg/m3, we retained 
97–99% of observations from the original datasets (Table S6). 

Table 1 provides a list of the predictor variables used for modeling 
PM2.5, data sources, and spatial and temporal resolution. We used T and 
RH, two common predictors used in modeling PM2.5 in past studies (Bi 
et al., 2020b; Di et al., 2019; Kloog et al., 2012, 2014), and obtained 
these data directly from the PurpleAir sensors for the locations where 
they were deployed. For the rest of the study area, we used datasets from 
the NOAA High-Resolution Rapid Refresh (HRRR) data archive 
(Benjamin et al., 2016; The University of Utah Mesowest Group, 2022) 
to obtain complete spatial coverage in our modeling domains. Other 
predictors in our models are commonly used in previous studies, such as 
population, housing density, and land use classifications (Bi et al., 
2020b, 2022; Di et al., 2019; Jain et al., 2021; Kloog et al., 2012, 2014), 
as well as road functional classes, road length, distance to roads, and 
traffic volume to account for fuel combustion from the transportation 
sector (Bi et al., 2020b, 2022; Jain et al., 2021; McDuffie et al., 2021; 
Weagle et al., 2018). We collected the land cover data from the National 
Land Cover Database (NLCD) (Earth Resources Observation and Science 
(EROS) Center, 2019), containing 20 land cover classes that we further 
combined into eight groups (see SI Section 2 and Figures S3-S5 for 
details). 

To capture the temporal variation, we included other predictors that 
are more temporally-variant such as hourly-monthly visitors at accom-
modation and food service locations and art, entertainment, and recre-
ational locations as proxies for cooking activities in commercial areas, as 
emission from restaurant cooking is another major source of air pollu-
tion in urban settings (Sinaga et al., 2020; Song et al., 2021). Although 
emissions from retail activities, industries, and energy sectors also 
contribute toward increased PM2.5 concentrations, the locations of these 
activities are not within close proximity to the PurpleAir sensors (i.e., 

100 m) in the study areas; therefore, we did not enter these variables 
into the model, and consequently, their impacts on PM2.5 cannot be 
captured in the prediction models. 

We compiled the hourly PM2.5 data at 8 a.m. and 6 p.m. each day, 
created a 100 × 100 m grid for the study areas, and assigned hourly 
PM2.5 values to each cell in this grid. We chose a grid cell size of 100 ×
100 m to allow for good spatial resolution while ensuring computational 
feasibility during the modeling procedure. We modeled data at 8 a.m. 
and 6 p.m. to capture the variations in air quality during morning and 
evening peak hours of traffic. We adjusted the spatial resolution of all 
variables to the grid cell size of 100 m and estimated their aggregated 
values for each grid (see Section 3 in the SI and Figures S6 – S8 for 
details). 

2.2. Modeling approaches 

We modeled air quality as a function of temperature, relative hu-
midity, the transportation network, land use, and visitor counts at food 
and recreational establishments (Table 1) using the gridded datasets 
with PurpleAir sensor locations, as well as a binary variable to account 
for weekday/weekend differences. We used four modeling approaches, 
namely RF, RFSI, STRK, and RFK. The RF models predict PM2.5 dis-
regarding the underlying spatio-temporal variabilities in the dataset. 
RFSI models advance RF by incorporating additional covariates that 
capture spatial dependencies among the observed locations. Kriging 
models such as STRK and RFK measure PM2.5 at an unobserved location 
and time by fitting a linear regression and RF-based trend function, 
followed by spatial-temporal ordinary kriging for residuals interpolation 
(see Section 4 in the SI for descriptions of these models). 

We generated separate models to measure PM2.5 at 8 a.m. and 6 p.m. 
for each month and each city using various statistical and machine 
learning methods. Specifically, we designed 20 RF models (10 months ×
2 h), 20 RFSI models, 20 RFK models, and 20 STRK models for each city. 
Each model was trained using hour-specific data observations for all 
days within a particular month and city. Consequently, each model can 
predict hour-specific PM2.5 concentrations for any day within that same 
month and city. For instance, an STRK model, specific to 8 a.m. of 
October in Denver, can predict PM2.5 at all 100 × 100m grid locations in 
Denver for 8 a.m. on any day in October, say October 12th. 

We determined this hour- and month-specific modeling approach 
based on the data requirements of kriging-based approaches, which 
necessitate a dataset without missing values for any observed location 
and timestamp. Across all study areas, very few sensors were operational 
throughout the entire 10-month study period, meeting the requirement 
for a complete dataset. Consequently, relying on a single model to pre-
dict hourly PM2.5 would depend on this limited number of sensors. 
Instead, we opted for models tailored to specific hours and months, 
allowing us to benefit from broader sensor coverage and a more exten-
sive dataset for each model. 

The hour-specific monthly models, therefore, have different numbers 
of sensors and only include the sensors that do not contain any missing 
data for any days within that particular hour and month of interest. The 
availability of sensors and their data completeness improved over the 
months for all cities. In Columbus, the first five months had fewer sen-
sors with 100% data completeness than the rest of the study months. In 
Denver and Pittsburgh, datasets from about 47 to 78% and 51 to 65% of 
total available sensors were used for the PM2.5 models (Table S6). 
Additionally, there were some cases where the corresponding sensor 
grids did not contain any waterbodies, forests, and certain activity lo-
cations (accommodation, food services, and recreational activities) and 
generated zero-values in the input dataset for the respective land use 
variables and null model coefficients in the STRK models. We also 
omitted the corresponding variables with zero values from that hour- 
specific monthly model in these cases. For instance, Columbus predic-
tion models only from October to April included hourly visitor counts to 
food and recreational establishments (Figure S6). For Denver, the 

Table 1 
Data on land use and human activity patterns collected from secondary sources.  

Data Unit Source Spatial 
resolution 

Temporal 
resolution 

Temperature oF PurpleAir/ 
NOAA High- 
Resolution 
Rapid Refresh 
(HRRR) 

PurpleAir: 
Sensor- 
specific 
NOAA 
HRRR: 3 km 
grids 

Hourly 
data Relative humidity % 

Population density People 
per m2 

5-year 
estimates 
American 
Community 
Surveys (2018) 

Census block 
group 

1y 

Road length m TIGER/Lines 
shapefiles 

Total length 
in meters by 
census block 
group 

1y 

Land cover data: 
high, medium, and 
low-intensity 
development, open 
space, grassland, 
forest, wetland, 
water 

m2 National Land 
Cover 
Database 
(NLCD), 2019 

30-m 
resolution 

5y 

Visitor counts at 
accommodation 
and food service 
locations 

People SafeGraph (cell 
phone data) 

At each point 
of interest 
location 

Hourly 
visitors in a 
month 

Visitor counts at arts, 
entertainment, and 
recreation 
locations 

People SafeGraph (cell 
phone data) 

At each point 
of interest 
location 

Hourly 
visitors in a 
month  
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models only included visitor counts to food services (Figure S8). 

2.3. Model validation 

We validated the model results in two ways: (1) performing k-fold 
cross-validation using PurpleAir sensor data, and (2) comparing model 
predictions with the PM2.5 measurements from the EPA monitors. 

Cross-validation during the modeling process. We applied a k-fold leave- 
location-out cross-validation technique to evaluate model accuracy. In 
this method, data from all sensor locations were divided into k parts to 
ensure that all daily observations at a given location are in the same fold. 
At each step of the validation, one-fold was set aside for testing and 
measuring prediction accuracy, whereas the rests (k-1 folds) were used 
for model training. We used mean absolute error (MAE) and coefficients 
of determination (R2) as indicators of model performance. 

Comparison of model predictions with EPA measurements. We retrieved 
PM2.5 observations from EPA regulatory monitors in Columbus (n = 1), 
Denver (n = 7), and Pittsburgh (n = 13) to serve as the ground truth 
data. Instead of using specific grid cells containing EPA monitors, we 
used neighborhoods of cells for validation purposes because the pre-
diction within any grid cell may deviate from the ground truth data. 
Each validation neighborhood contains 9 grid cells, including the cell 
containing the EPA monitor and 8 neighboring cells (i.e., those that 
share an edge or vertex with the EPA-contained cell). 

We predicted hour-specific PM2.5 concentrations for six days per 
month for the cell neighborhoods in each city using the hour-specific 
monthly RFSI, STRK, and RFK models. The dates were chosen five 

days apart, starting from the 3rd day of the month. Then, for each 
validation neighborhood, we calculated the mean values of our modeled 
data for each day (8 a.m. or 6 p.m.) and compared them with the EPA 
measurements. We used errors and biases in both absolute and relative 
terms as the evaluation metrics. The absolute error and bias represent 
the absolute (non-negative) and raw differences between EPA mea-
surements and PM2.5 predictions. The relative error and relative bias 
represent absolute error and absolute bias divided by the EPA 
measurement. 

3. Results 

3.1. Descriptive statistics 

Fig. 1 illustrates the monthly variation in PM2.5 concentrations from 
the PurpleAir sensors between July 2021 and April 2022 for the three 
study areas at 8 a.m. (left) and 6 p.m. (right). Columbus, Pittsburgh, and 
Denver experience similar concentrations of PM2.5 throughout the year 
(i.e., the mean of the means is roughly 9 ± 4 μg/m3 for all three cities). 
The sensors located in Pittsburgh and Denver yield more outliers (red 
dots in Fig. 1) compared to Columbus, which are likely attributable to a 
combination of the number of sensors in Columbus (n = 48 vs. 172 in 
Denver and 254 in Pittsburgh) and the geographic distribution of these 
sensors (e.g., the sensors are sparser and more clustered in Columbus 
than the other two cities). In general, PM2.5 concentrations are higher in 
both summer (July–August) and winter (December and January) for all 
three cities (Figure S9). Moreover, Columbus and Pittsburgh are in a 

Fig. 1. Boxplots showing the monthly variation in PM2.5 concentration for 8 a.m. (left) and 6 p.m. (right), based on PurpleAir data. The values along the boxplots 
represent their mean values. 
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cool, humid climate zone, while Denver is in a cold, dry climate zone 
(International Code Council (ICC), 2021). Due to their close spatial 
proximity (~260 km), Columbus and Pittsburgh often experience 
similar temporal variations in weather (Figure S9 – S11). 

3.2. Comparison across models 

We developed 80 models (10 months × 2 h x 4 modeling approaches) 
for each city using the PurpleAir sensor datasets. Considering both 8 a. 
m. and 6 p.m. models, the average mean absolute error (MAE) scores 
respectively for RF, RFSI, STRK, and RFK models are 3.16, 2.03, 1.50, 
1.85 in Columbus, 2.67, 1.35, 1.67, 2.00 in Denver and 3.19, 1.89, 1.96, 
2.46 in Pittsburgh. Moreover, the average R2 for RF, RFSI, STRK, and 
RFK models are 0.38, 0.78, 0.81, 0.84 in Columbus; 0.25, 0.62, 0.53, 
0.44 in Denver; and 0.34, 0.63, 0.62, 0.52 in Pittsburgh. 

Figs. 2 and 3 represent the MAE and R2, respectively, of these models 
for each hour, month and city. For example, the first orange-colored box 
on the left-most panel in Fig. 2 represents the distribution of MAE esti-
mated from 10 RF monthly models for 8 a.m. in Columbus. The RF 
models yield higher MAE, indicating worse prediction performance than 
the other modeling approaches, especially for Columbus and Pittsburgh 
(Fig. 2). For Denver, RF and RFK show similar model performance, 
whereas RFSI and STRK demonstrate slightly better performance with 
lower ranges of MAE. Also, we observe differences in model perfor-
mance between morning and evening hour models in all cities. For 
instance, the 6 p.m. models show relatively better performance for Co-
lumbus and Pittsburgh, whereas it is the opposite for Denver. 

Similarly, R2 values are notably higher for RFSI, STRK, and RFK 
models than the RF models, indicating that they can better explain the 
variabilities in the observed datasets (Fig. 3). However, the ranges of R2 

values differ substantially between 8 a.m. and 6 p.m. models for Co-
lumbus and Pittsburgh, and the 6 p.m. models yield a relatively wider 
range of R2. Similarly, Denver models have a wide range of R2 for both 8 
a.m. and 6 p.m. This wide range of R2 indicates that the current pre-
dictors may not adequately explain the variabilities in PM2.5 concen-
trations for all monthly models – while this set of predictors 
satisfactorily explains the variabilities in PM2.5 concentrations for some 
models of some months, they fail to do so for other models, resulting in 
the high variations in R2 values. The distribution of sensors and the 
resultant land coverage data availability may have contributed to this 
fluctuation in R2. In all cities, the sensors are mainly concentrated in the 

core urban areas, and the corresponding grid cells only contain infor-
mation on land use and activity patterns around the sensors. Therefore, 
our models do not capture the land use patterns more likely to be 
available in suburban areas (such as grassland, forest, and wetland) and 
their effects on PM2.5 concentrations, especially for Denver and Pitts-
burgh. Due to the relatively poor performance of RF in both Figs. 2 and 
3, we exclude this model from further discussion. 

Fig. 4 illustrates the predicted PM2.5 concentrations from the STRK, 
RFSI, and RFK models for the core urban areas of each metropolitan area 
on February 18, 2022, at 8 a.m., a time and date chosen at random and 
irrespective of the model performance indicators. Additional prediction 
maps are provided in SI Section 6, including maps of the entire study 
areas (for the same date) and core urban areas (on different dates) 
(Figures S12-S14). We also provide a temporally-averaged prediction 
map (across days in February 2022) in Figure S15 to investigate un-
derlying spatial patterns. The color bar scaling within each map differs 
to highlight spatial differences. 

For each city, some spatial similarities exist across the PM2.5 pre-
dictions derived from each model. For instance, the central urban areas 
consistently have higher concentrations of PM2.5, marked by red-colored 
grids in both Columbus and Denver. The fringe areas of these two study 
areas have lower PM2.5 values in the suburbs than in the main city. In 
Pittsburgh, high PM2.5 values are more concentrated near the water-
bodies and their surroundings than the rest of the core city. The pre-
dicted patterns of PM2.5 observed in Pittsburgh are consistent with the 
geographical features, i.e., multi-lane highways and some polluted in-
dustrial sources are located adjacent to the river valleys. Moreover, this 
is confirmed by prior research with mobile observations of air pollution 
within Pittsburgh (Gu et al., 2018; Li et al., 2018; Tan et al., 2014). 

The prediction differences and spatial dissimilarities in the RFSI, 
STRK, and RFK prediction maps for each city are perhaps an outcome of 
their methodological differences in capturing spatial relationships. 
Using a spatial interpolation approach, STRK maps reflect the generic 
land use pattern for each city and include very spatially smooth pre-
diction surfaces. The prediction values from STRK follow a wider range 
than the other two models and often contain outliers due to their de-
pendency on linear regression as the base model algorithm. Even though 
we used a global threshold value to exclude extreme values from all 
models, the data distribution of PM2.5 was non-normal for some months 
and study areas, indicating many outliers in the training set. Applying a 
linear regression model on such skewed datasets tends to produce higher 

Fig. 2. Mean absolute errors (MAE) of the RF, RFSI, STRK, and RFK models, estimated for 8 a.m. and 6 p.m. for Columbus, Denver, and Pittsburgh. Each box plot 
represents a distribution of the MAE for the 10 models specific to an hour and month for the respective study areas. 
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values and outliers, reflected in the STRK predictions. 
Similarly, the spatial patterns in the RFK prediction maps somewhat 

align with the generic land use pattern due to its use of kriging to embed 
spatio-temporal variabilities within the RF algorithm. However, 
compared to STRK, the resemblance of RFK maps to the land use pattern 
is less pronounced, and predictions also follow a smaller range than 
STRK predictions. Unlike linear regression models, machine learning 
models such as RF generate predictions that are close to the observed 
values in the training set; resulting in low values of model residuals 
(difference between the observed data and RF predictions). Therefore, 
the RFK predictions are mainly driven by the RF component rather than 
the kriging component of the model. 

The RFSI maps are more abstract since they only include observa-
tions and distances from neighbors in the predictor list to indicate the 
spatial component. When training the models, RFSI uses a fixed band-
width of neighborhood distances based on the spatial distribution of 
sensors. RFSI assumes distances between the prediction grids and their 
neighbors are also within this bandwidth and uses the same prediction 
mechanism even if they are not (Sekulić et al., 2020). This could be 
problematic for our study areas. In all cities, the sensors were clustered 
in central urban areas, resulting in a small distance bandwidth 
(Figure S3-S5). The fringe area grids were at a distance shorter or longer 
than the threshold, yet received similar predictions assuming that the 
neighbors were at the minimum or maximum neighborhood distance of 
the trained model. 

3.3. Model evaluation and comparison with EPA data 

Fig. 5 illustrates the distribution of errors and biases (absolute and 
relative) estimated for all cities and models by comparing the predicted 
values and the ground truth data from EPA. Overall, the mean absolute 
errors are slightly lower for predictions from the RFSI models than those 
from the STRK and RFK models. In terms of mean absolute biases, STRK 
models perform better or similar to the other two models. The mean 
absolute biases are mostly negative for all cities and models, indicating 
over-predictions relative to EPA observations. For context, Murphy et al. 
report an average root-mean square error of roughly 1.8 μg/m3 and an 
average mean bias of roughly − 0.3 μg/m3 for a state-of-the-science 
regional chemical transport model (Murphy et al., 2023). 

We use the relative error and bias estimates to enable a cross- 
comparison across cities that we cannot infer from absolute errors 

alone. The relative errors exhibit similar patterns across each city and 
model as in Fig. 5; on average, these relative errors range from roughly 
20% to roughly 40%. Similarly, the relative biases, on average, range 
from roughly − 30% to − 10%. Thus, there are arguably minor differ-
ences in the prediction performance across all cities and models. 

3.3.1. Influence of wildfire events 
Denver was impacted by transported wildfire smoke in 2021 (and 

many other years). Langford et al. (2023) highlight enhancements to 
PM2.5 in Colorado due to so-called “megafires” in California and Arizona 
during 2021 (Langford et al., 2023). In general, the daily-averaged PM2.5 
concentrations in 2021 were roughly double those in 2019 and 2022. 
However, we have no strong evidence that wildfire smoke has influ-
enced our model results. We screened data to remove extreme events 
(>50 μg/m3), and both the errors and the biases – both absolute and 
relative – compared to the EPA AQS monitors for Denver are similar to 
those for Columbus and Pittsburgh (Fig. 5). 

4. Discussion 

4.1. Summary of the results 

In this study, we generated high spatio-temporal resolution predic-
tion surfaces of PM2.5 using data from low-cost sensors in the Columbus, 
OH, Denver, CO, and Pittsburgh, PA metropolitan areas. We applied ML 
and geostatistical approaches, namely RF, RFSI, STRK, and RFK, to 
predict daily PM2.5 concentrations at a specific hour at 100 × 100 m 
resolution. This spatio-temporal granularity is an improvement over the 
existing models from past studies that tend to be aggregated more 
coarsely over time and/or space. We chose the predictions of STRK 
model as the final predictions because of the similar or better model fits 
and the spatial realism in the prediction surfaces as compared to those of 
other modeling approaches. 

Although our results are not directly comparable with prior efforts 
given different datasets and contexts, we found that the model perfor-
mance indicators are comparable with those of the previous studies. For 
instance, considering both 8 a.m. and 6 p.m. models, the mean R2 of all 8 
a.m. and 6 p.m. STRK models for Pittsburgh is 0.62, which is lower than 
the R2 of 0.78 found in another model evaluation in Pittsburgh (Jain 
et al., 2021). It is worth noting that our models use much more granular 
data with high spatio-temporal resolutions, which often involve more 

Fig. 3. R2 of the RF, RFSI, STRK, and RFK models, estimated for 8 a.m. and 6 p.m. for Columbus, Denver, and Pittsburgh. Each box plot represents a distribution of R2 

of the 10 models specific to an hour and month for the respective study areas. 

A. Kar et al.                                                                                                                                                                                                                                      



Atmospheric Environment 326 (2024) 120486

7

variations in the data, more complicated modeling techniques, and thus 
can have lower R2 compared to the same methods applied to data with 
lower temporal or spatial resolutions. For example, the previous study 
on Pittsburgh (Jain et al., 2021) used daily estimates of PM2.5 that may 
have contributed to producing a more stable training dataset and 
slightly better model performance than ours. Similarly, other studies 
model PM2.5 at larger spatial resolutions (≥500 m) and/or at longer 
temporal resolutions (e.g., daily estimates) (Bi et al., 2020a, 2022) with 
low-cost sensor data for the state of California (Bi et al., 2020a, 2022; Vu 
et al., 2022), Los Angeles County (Lu et al., 2021b), and other cities in 

the United States, all achieving higher R2 (i.e., above 0.85) (Bi et al., 
2020a, 2022; Lu et al., 2021b, 2022; Vu et al., 2022). However, as our 
goal is to improve prediction accuracy, MAE is a better indicator of 
model predictive power because models with a high R2 may be subject to 
overfitting and limit their generalizability. Overall, our models have 
lower error rates (our mean MAE = 1.74 μg/m3) as compared to models 
in past studies using low-cost sensor data, such as Jain et al. (2021) with 
MAE = 1.81 μg/m3 (Jain et al., 2021), Lu et al. (2021) with RMSE =
3.23 μg/m3 (Lu et al., 2021b), Bi et al. (2020) with RMSE = 3.71 μg/m3 

(Bi et al., 2020b), and Lu et al. (2022) with MAE = 2.01 μg/m3 and R2 =

Fig. 4. STRK, RFSI, and RFK prediction maps for three cities on February 18, 2022, at 8 a.m. (month and date are arbitrarily selected). The numeric values in each 
color scale represent the range of predicted values between 10th to 90th percentile. We selected different color scales for each city to highlight spatial differences in 
the prediction surfaces among the maps. 
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0.66 (Lu et al., 2022), which is equivalent to our study. 

4.2. Monitoring and modeling air quality with low-cost sensors data: 
limitations and future directions 

While low-cost sensors have lower accuracy and precision than EPA 
AQS monitors, sensors have the ability to provide useful information. 
Measurements from PurpleAir sensors and the EPA AQS monitors are 
highly correlated (Kelly et al., 2017; South Coast Air Quality Manage-
ment District, 2024). Moreover, PurpleAir sensors tend to have high 
inter-unit consistency (Malings et al., 2020; South Coast Air Quality 
Management District, 2024) (also see Figures S1-S2). Aggregation of 
measurement at the hourly level, as we did, can reduce some of the 
uncertainty in the sensor measurements (Barkjohn et al., 2021). 
Together, this means that after careful data processing, we can apply 
calibration equations, such as the method proposed by Barkjohn et al., to 
obtain more accurate results (Barkjohn et al., 2021). We acknowledge 
that uncertainty in the observed sensor concentrations may propagate 
through to the model results. Nonetheless, we agree with Reis et al. 
(2015) in that it is still valuable to have more data and results with some 
uncertainty – our work being one of them – to enrich our current 
practice of predicting air quality with fewer data yet higher certainty 
using data from EPA regulatory monitors. 

Additionally, regardless of the modeling approach, spatial over- 
extrapolation may occur when predicting PM2.5 at locations far away 
from the sensor clusters, such as in the urban outskirts. However, this 
does not affect our evaluation of model performance (Fig. 5) and 

predictions around the urban centers (Fig. 4), where both EPA monitors 
and Purple Air sensors are clustered (Figure S3-S5). 

Our study informs future air quality research in selecting suitable 
modeling approaches when working with low-cost sensor data based on 
sensor network characteristics. This study demonstrates that, for 
modeling PM2.5 at a very granular level, spatio-temporal models such as 
STRK, RFSI, and RFK are better than non-spatio-temporal models such as 
RF. For this study, kriging models such as STRK and RFK outperform 
machine-learning-only models (e.g., RF, RFSI), especially in capturing 
spatial relationships and producing smoother predictions across 
geographic areas, owing to their kriging spatial interpolation technique. 
These kriging models are useful when all sensors work consistently over 
time (i.e., to estimate the space-time variogram), or with a very large 
network of sensors such that listwise deletion of missing values does not 
affect the sample size, which is the case in our study. In contrast, the 
effectiveness of RFSI models is contingent on the spatial distribution of 
sensors within the study area. While RFSI inherits the advantages of 
machine learning models, such as no reliance on statistical distribution 
assumptions, allowing a large set of input variables, and shorter 
computational time, these models may produce maps with artifacts if the 
uneven spatial distribution of sensors across the study area as in our 
study (and most commonly encountered in the real world). RFSI may be 
more suitable in future studies with more spatially dispersed sensors, 
and where missing data or inconsistent sensor data is common. 

A good model can only be achieved with good data. Our study un-
derscores the pressing need for a well-coordinated sensor deployment 
and regular maintenance strategy. While independent deployment is a 

Fig. 5. Distribution of errors and biases (absolute and relative) between the predicted PM2.5 and the estimates from EPA monitors of all cities and models. The values 
along the boxplots indicate their mean. 
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strength of low-cost sensor networks, this practice results in an uneven 
distribution of sensors that leads to inconsistency in the spatio-temporal 
data. This inconsistency, in turn, leads to many challenges in modeling 
air quality discussed earlier in this section. A potential remedy is to 
expand the network in spatial coverage and density, such that when a 
sensor fails at a certain time, other sensors still provide sufficient and 
reliable data. 

To improve model prediction at high spatio-temporal scales, more 
fine-grained data are needed, such as hourly (or real-time) traffic on the 
roads or to certain destinations. To achieve this, sensors need to be 
strategically placed near major pollution sources, such as commercial 
cooking activities at accommodation, food service, and recreational lo-
cations; as well as retail, industrial facilities, and agricultural activities. 
Some of these are available in our dataset but were not used in the model 
due to the fact that no sensors are placed near these establishments. In 
addition, vehicle traffic volumes, such as those provided by StreetLight, 
could be useful to generate high resolution predictions of PM2.5. More-
over, information about PM2.5 concentrations away from core urban 
areas can aid in the prediction for, e.g., low-intensity development and 
forested land cover classes (see Figures S3 – S5). 

While having a consistent number of sensors over time could help 
improve predictions of PM2.5 concentrations, data completeness is also 
equally important. This requires regular maintenance of the sensor 
network. Our current approach handles this data incompleteness by 
adopting a multiple-modeling approach with increased time complex-
ities where each model represents a specific hour, a month, and a city. 
Future studies can use existing data imputation techniques to evaluate 
their performance in predicting PM2.5 for the missing time stamps. 
Moreover, current sensor data quality assessment and calibration do not 
consider temporal variation. Future research can advance them as dy-
namic models with time variants to be updated periodically using real- 
time data. Such dynamic models will enable accurate re-calibration of 
an existing observation, as well as estimation of missing PM2.5 values (Li 
et al., 2023; Taira et al., 2022; Xiang et al., 2016). 

In addition to accounting for the sensor and data challenges, future 
research may adopt a similar approach and further expand to a single 
model with high temporal resolution instead of having multiple monthly 
models. Such models require (1) a consistent number of sensors and data 
across all months, and (2) input variables that capture spatio-temporal 
variations, such as hourly vehicular traffic volumes to capture the var-
iations in PM2.5 during the peak and off-peak periods, as well as monthly 
variations in both existing and additional weather variables (e.g., wind 
speed, precipitation, and atmospheric pressure) to capture the seasonal 
differences in PM2.5. 

5. Conclusions 

By employing low-cost sensor data and the EPA correction factor, we 
generated high spatiotemporal-resolution prediction surfaces of PM2.5 
concentrations in three US urban areas. Our PM2.5 prediction surface has 
the highest spatio-temporal resolution (i.e., hourly-specific daily level, 
100m grid), the model performance is comparable with that from past 
studies, and the model error (MAE) is lower. The results and approach 
have the potential to generalize to other major US cities with similar 
urban characteristics. The high spatio-temporal resolution analysis 
adopted in this study can be useful for assessing dynamic exposure, i.e., 
exposure to air pollution (especially traffic-related pollutants) during 
daily travel and its long-term impacts on human health. 

The comparison of our model results with EPA measurements dem-
onstrates the ability to model PM2.5 using low-cost sensor data with 
reasonable consistency and accuracy levels compared to regulatory 
monitors. This signifies the need to monitor PM2.5 using both high- 
quality regulatory monitors and low-cost sensors to complement one 
another’s efforts and support air quality modeling and applications, as 
each type of sensor has its own limitations and trade-offs. 
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