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Abstract
Stay-at-home policies in response to COVID-19 transformed high-volume arterials and highways into lower-volume roads,
and reduced congestion during peak travel times. To learn from the effects of this transformation on traffic safety, an analysis
of crash data in Ohio’s Franklin County, U.S., from February to May 2020 is presented, augmented by speed and network
data. Crash characteristics such as type and time of day are analyzed during a period of stay-at-home guidelines, and two
models are estimated: (i) a multinomial logistic regression that relates daily volume to crash severity; and (ii) a Bayesian hier-
archical logistic regression model that relates increases in average road speeds to increased severity and the likelihood of a
crash being fatal. The findings confirm that lower volumes are associated with higher severity. The opportunity of the pan-
demic response is taken to explore the mechanisms of this effect. It is shown that higher speeds were associated with more
severe crashes, a lower proportion of crashes were observed during morning peaks, and there was a reduction in types of
crashes that occur in congestion. It is also noted that there was an increase in the proportion of crashes related to intoxica-
tion and speeding. The importance of the findings lay in the risk to essential workers who were required to use the road sys-
tem while others could telework from home. Possibilities of similar shocks to travel demand in the future, and that traffic
volumes may not recover to previous levels, are discussed, and policies are recommended that could reduce the risk of inca-
pacitating and fatal crashes for continuing road users.

Keywords
road safety, COVID-19, crash severity, traffic speed, transportation planning

Stay-at-home policies in response to COVID-19 reduced
travel on the road networks of U.S. metropolitan areas
beginning in March 2020. In Ohio, Governor DeWine
announced on March 12 that the school system would
not be reopening after spring break, becoming the first
state to fully close schools in response to COVID-19.
Several major employers in the Columbus metropolitan
area were already encouraging employees to work from
home. The following week, the state announced a shelter-
in-place order to begin on March 23, asking residents to
‘‘stay at home or at their place of residence,’’ with excep-
tions for what were deemed essential activities including
some types of work (1). These policies, alongside addi-
tional business closures, greatly reduced travel demand,
resulting in much lower volumes on arterial roads and
highways that were designed for higher peak period

traffic. Speed was central to this transformation, as fewer
cars on the roads reduces impediments to driving at
higher speeds and may encourage speeding behavior (2).

This unusual period of severely reduced traffic
volumes under stay-at-home policies presents on oppor-
tunity to revisit the relationship of traffic volume, speed,
and road system design in regard to traffic safety, and to
use that reflection to prepare for possible future
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scenarios of temporary or long-term reduced demand.
This paper presents an analysis of crash data in Franklin
County, Ohio—home to the city of Columbus—from
February 2020 to May 2020, augmented by traffic speed
and road network data. First, crash characteristics such
as crash type, time of day, and intoxication are analyzed,
and the extent that crash frequency declined alongside
volume during the stay-at-home period is also consid-
ered. A multinomial logistic regression model to relate
lower daily volume to more severe crash outcomes, and
a Bayesian hierarchical logistic regression model to relate
increases in average speeds to increased severity and the
likelihood of a crash being fatal are constructed. Beyond
confirming current understandings of the relationship of
volume, speed, and safety, the findings explore the
mechanisms of these relationships under the pandemic
response. The findings are important because of the risks
posed to essential workers who are required to use the
road system while others telework from home. Two types
of future scenarios are considered, one in which there is
another temporary shock to travel demand, and another
in which traffic volumes do not recover to previous ‘‘nor-
mal’’ levels because distancing practices become sus-
tained. For both of these, policies are recommended that
could improve safety.

Background

Volume, Speed, and Traffic Crashes

‘‘Traffic volume’’ refers to the number of vehicles passing
through a road segment during a defined time period.
Research on the relationship of volume and safety dates
to the 1950s with a study showing rates of multi-vehicle
car crashes increasing with both volume and speed (3).
Urban and rural contexts differ in the variability of vol-
ume over the course of a day. Rural low-volume roads
are seen as a distinct safety challenge, which numerous
studies and guides seek to address (4–6). For urban
roads, much focus is on the effects of congestion during
high-volume periods on both crash frequency and sever-
ity. Gwynne analyzed Newark, New Jersey, crash data
against hourly volumes, and found that crash rates were
higher in lower-volume and higher-volume periods, com-
pared with mid-range volumes (7). A recent review of the
literature found that, while most studies showed a posi-
tive relationship in which volumes increase crash rates,
larger studies tended to find this U-shaped effect in
which low and high volumes are more correlated with
crashes than middle volumes (8). A Maryland study of
arterial roads and highways found that, while crash fre-
quency increased with congestion, severity of crashes
during congested periods was lower (9). A UK highway
study disaggregated traffic volume (number of vehicles)
from congestion (delays), and included both in a model,

finding that volume was associated with less-severe
crashes, while delays had no effect on crash severity, sug-
gesting that traffic flow is more important than volume
(10). Golob and Recker compared different types of con-
gestion, showing how more severe crashes happen with
lower density of vehicles and freer flow (11). The effects
of congestion on severity may also be contingent on the
built environment in dense settings (12).

Speed is well known as strongly associated with higher
crash severity (13). It is also associated with higher crash
rates when controlling for congestion or volume (14).
Traffic volumes at peak times, through congestion, can
act as a limiter of maximum speed. But even against
these limits, what causes some drivers to operate at ille-
gal speeds? Drivers who choose to speed are more likely
to be male, younger, and with lower levels of education
(15). Speeding may also be habitual, especially among
those who perceive speeding not to be a reckless beha-
vior or problematic for society (16). The choice to speed
has additionally been framed as a trade-off between per-
ceptions of risk and perceptions of time saved (17).
However, Ellison and Greaves estimate that the average
speeding driver saves only seconds per day and argue this
saving comes at the cost of fatalities (18). Raising speed
limits on roadways can increase crash severity (19).
However, through an analysis of speeding and fatality
rate data, Lave shows that higher variance of speeds
around the speed limit—both faster and slower—are cor-
related with increased fatal crashes, which point to the
role of speed limits in coordinating traffic (20).

Planning of Urban Road Networks in the U.S

Road capacities, speeds, designs, and network shape are
derived through a process of regional planning. Road
networks in U.S. metropolitan areas consist of streets of
varying widths and speed limits, ranging from wider,
faster high-volume highways to narrower, slower low-
volume local roads. This division of streets into a hierar-
chy emerged from conceptions of ideal community
design that still shape their layout today. The influential
‘‘neighborhood unit’’ of the 1920s separated residences
and schools from shopping and business centers and
connected them with different types of highways and
arterial roads (21). This hierarchy further developed as
engineers created new methods of analysis and forecast-
ing. The first travel surveys emerged in the 1940s, and an
understanding of the relationship between urban land
uses and travel demand led to the development of a fed-
erally mandated urban transportation planning process
beginning in the 1960s (22). Modern transportation plan-
ning is thus part of a regional decision-making process in
which current land uses and traffic volumes, and expec-
tations of future land uses, inform decisions about new
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and adjusted roads (23). New development and resulting
road designs combine to shape traffic volume and speed
limits of the road network which then play a role in
determining safety outcomes (24). Some land use pat-
terns are more dangerous for travelers than others. For
example, the siting of large retail land uses on urban
arterials, such as big box shopping complexes, rather
than smaller parcels on more pedestrian-friendly local
roads, has negative safety outcomes, likely as a result of
the higher speeds on arterials (25).

This paper takes the drop in travel demand on
Franklin County, Ohio, roads starting in March 2020 as
an opportunity to observe a natural experiment in the
effects of drastically reduced volume on traffic speeds
and crashes on planned urban road networks. As theory
predicts, it is expected to find that lower volumes are
associated with more severe crashes. Yet it is also
hypothesized that, while number of crashes will decrease,
there will be increases in speeding behavior, intoxication,
and types of crashes that together increase the per-crash
risk of incapacitating injury and death for those who
continue to use the road network, such as essential work-
ers. It is also intended to explore the relationships of
crash frequency with lower volumes, and higher speeds
with different road types. The findings contribute to
understandings of the relationship of volume, conges-
tion, and speed on arterials and highways, as well as
showing the implications to resilience of the mobility-
oriented planning decisions that shaped the current net-
work and its large capacity. Furthermore, the findings
provide evidence for a need to take action on reconfigur-
ing the road network in the event that decreased travel
demand related to social distancing is a lasting phenom-
enon, and to be prepared for future shocks.

Data

Crash and Volume Data

The analyses in this paper combine crash, traffic volume,
and real-time road speed data. The Ohio Department of
Public Safety compiled crash data from reports; these
data are available via the Ohio Department of
Transportation (ODOT) website. In the study area of
Franklin County during February 1 to May 8, 2020,
there were 5,294 crashes. The crash dataset provides
variables on crash type, severity of injury, the actions of
participants, time, location (latitude, longitude), road
characteristics (e.g., number of lanes, functional road
class [FRC]), and crash-specific characteristics (e.g.,
demographics, driving behavior). Specific traffic volumes
by road and time of day were not available for the
majority of crash points. Therefore, to capture the degree
to which volumes decreased as a result of COVID-19
pandemic restrictions, daily measurements of traffic

volume on an urban interstate in Franklin County are
used to create an index varying between 0 and 100 show-
ing relative daily differences in volumes over the study
period.

Speed Data

Speed information for this time period is derived using
INRIX real-time traffic data on INRIX XD road seg-
ments, which capture immediate changes in networks
resulting from the addition of infrastructures (e.g., new
roads), policy interventions (e.g., congestion charging),
and system-wide (e.g., COVID-19) as well as local events
(e.g., music concerts). There are two types of speed data:
observed real-time and reference speeds. To determine
the extent to which speeds were higher than was typical
(indicating freer-flow), the difference between the aver-
age observed daily real-time speed and a reference speed
is calculated for each road segment. Here, average daily
real-time speed is an average of the speeds observed by
INRIX for each day (considering 24 h) for each segment.
The reference speed is not the posted speed limit, but,
rather, the average speed of traffic that is typically
observed by INRIX on a given segment (26). Crash data
is joined to INRIX road segments based on the date of
crash occurrence, location, and road functional class. An
issue when linking crashes to INRIX road segments is
the discrepancy in functional class coding scheme
between ODOT and INRIX. To maintain consistency
between crash and speed datasets, ODOT codes were
matched to INRIX as shown in Table 1.

Methods

Multinomial Logistic Regression Model of Crash
Severity in Relation to Volume

Given that injury scales are widely used to classify
crashes, ordinal logistic regression models are commonly
applied to understand factors that influence crash sever-
ity. However depending on setting and context of a
study, the required proportional odds assumption is
often unmet. In such cases, researchers have applied
alternative approaches, such as generalized ordered

Table 1. Matching of Ohio DOT (ODOT) and INRIX Functional
Road Class (FRC) Codes for Speed Data

ODOT FRC codes INRIX FRC codes

Interstate (1), freeway (2) Highways and
intersections (1)

Principal artery (3) Major arteries (2)
Minor artery (4) or major collector (5) Major roads (3)
Minor collector (6) or local road (7) Neighborhood roads (4)
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logistic regression, that relax this assumption (10, 27).
Another approach is multinomial logistic regression,
which allows flexibility for different degrees and even
directions of effects on different categories of the depen-
dent variable (28). Given the exploratory goal of investi-
gating outcomes related to a new phenomenon—
COVID-19 stay-at-home restrictions—the flexibility of
multinomial logistic regression was opted for.
Furthermore, the multinomial approach yielded a better
model fit than ordered alternatives.

Two multinomial logistic regression models were
fitted to show how the effects of stay-at-home policies on
crash severity are related to reduced traffic volumes.
These models were developed using 4,422 crash data
points that were not missing any information about crash
type and location. They have identical specifications,
except that the role of stay-at-home policies is measured
by a different variable in each. Both models control for
crash type, driver actions (speeding, impairment, distrac-
tion), road characteristics (location, width, speed limit),
and crash time (weekday peak period, weekend, weather
conditions). In the first model, stay-at-home policies are
represented by a binary independent variable indicating
for each crash, if it occurred after the start of a defined
period of COVID-19-related stay-at-home policies,
between March 15 and May 8. In the second model, this
variable is replaced with a variable whose value for each
crash represents a scale of daily traffic volume relative to
other days in the entire study period of February 1 to
May 8. Selected insignificant independent variables are
maintained as controls in models, because many of these,
such as alcohol use and inclement weather, are consid-
ered important to crash modeling. It is also hoped to
provide a complete picture of factors that do and do not
influence crash severity.

Multinomial logistic regression coefficients represent
the change in the log odds of a particular severity out-
come in comparison with a base category; however, coef-
ficients are also converted to odds ratios (OR) using
(exp(b)) for easier interpretation. The OR of a covariate
represents the factor by which the dependent variable
will be multiplied with a unit increase in the coefficient.
Therefore, a value of less than one indicates a negative
relationship between the response variable and covariate,
whereas a value greater than one indicates a positive
relationship. For these models, ORs represent increases
or decreases in the likelihood of a particular severity
outcome.

Hierarchical Binary Logistic Regression Model of Fatal
Probability in Relation to Speeds

Past studies suggest that the average level of speeding in
major cities of Ohio increased dramatically during the

stay-at-home phases of 2020, compared with the same
time period in 2019 (2). Columbus is one of these major
cities where the average speed level increased from
4.49 km/h to 17.65 km/h between 2019 and 2020 (2). This
study developed two separate hierarchical models for
non-stay-at-home and stay-at-home periods to under-
stand the influence of speed on the crash severity in
respective study periods. The hierarchical models explore
the severity levels of a crash in relation to being fatal or
non-fatal, given that the crash has already occurred.
Moreover, the models predict the probability of a crash
being fatal considering its variance at different FRCs.

The dataset contains 2,457 data points for the non-
stay-at-home period and 792 data points for the stay-
at-home period that had speed data available. A one-
sided Fisher’s exact test was performed to identify the
significance of changes in the proportion of fatal crash
occurrence between non-stay-at-home and stay-at-
home periods. However, the hierarchical model specifi-
cations do not evaluate the statistical significance of
the differences in model coefficients over the study
periods. Therefore, the changes in the influence of
variables on predicting a crash being fatal over time
may occur by chance and do not reflect any statistical
significance.

A two-tiered hierarchical model for the datasets of
each time period was applied. In the model, the average
daily real-time speed above the reference speed limit of
each road segment was considered as a population-level
indicator (Level 1), and road classes were considered as a
group-level indicator (Level 2). The dependent variable
was categorized as non-fatal and fatal. Therefore, a bin-
ary logistic distribution is used (29). In the binary logistic
distribution, the probability (p) of a crash being fatal (y)
at a road segment (i) can be denoted as:

yi;Binary pið Þ

pi =Pr yi = 1ð Þ

logit pið Þ= log(
pi

1� pi

)=a+bxi + Ei ð1Þ

where
xi = average daily speed above the reference speed

limit of road segment (i);
a = average probability of a crash being fatal (popu-

lation-level intercept);
b = the magnitude of influence of xi on the outcome

variable (slope);
Ei = random error.
Equation 1 is updated to a random intercept model to

estimate the variation in the average probability of a
crash being fatal among road classes. Therefore, the
probability (p) of a crash being fatal (u) on a road seg-
ment (i) within road class (j) can be expressed as:
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uij = logit pij

� �
=aj +bxi + Eij ð2Þ

2ij;Normal 0,se
2

� �

aj;Normal(0,sa
2)

where aj is the road class-specific random effect assumed
to be normally distributed at the group level with
unknown variance sa

2. The population-level error term
2ij is assumed to be normally distributed with unknown
variance se

2 (29).

Bayesian Inferences

For this paper, a hierarchical model was developed using
a full Bayesian approach derived from the Monte Carlo
Markov Chain (MCMC) algorithm (30). Bayesian infer-
ence is an algorithm that summarizes fitted probability
of a dataset so that prediction on new data can be
obtained using the probability distribution of model
parameters (31). In other words, Bayesian inferences
take into account a prior set of knowledge, and develop
a posterior set of knowledge based on the information
contained within the dataset. Its posterior distribution is
proportional to the product of the prior information on
the parameters and the likelihood measures of the data
samples (29). The Bayesian framework defines unknown
quantities as random variables, and explains them as
probability distributions. Therefore, the Bayesian infer-
ences assume random effect distributions of hierarchical
models as the prior distribution, and predict the out-
comes of the dependent variable (uij) as normally distrib-
uted around a mean (mij) with an error term (se

2).
Therefore, Equation 2 can be rewritten as:

uij = logit pij

� �
=Normal(mij,se

2) ð3Þ

mij =aj +bxi

aj;Normal(a,sa
2)

where aj is the mean response variable assigned to each
road class (j) and follows a Gaussian distribution with
the mean a (population-level intercept) and standard
deviation sa (of group-level intercepts) (29).

The model was fitted using the BRMS package, which
models Bayesian inferences in an RStudio environment
(32). The model was designed based on unknown, unin-
formative priors, where the regression coefficients were
assumed to have a normal distribution with a mean
equal to zero and a standard deviation that follows a
HalfCauchy Distribution with a scale parameter equal to
10 (10). The posterior distributions were estimated using
10,000 iterations of four Markov chains.

Model Interpretation and Assessment

Binary logistic model estimations are in a log-odd scale.
For better interpretation, both population-level and
group-level intercepts were recalculated in a logit inverse
scale where the probability of response variable is mea-
sured by p= exp(a)/(1 + exp(a)) (30). Additionally,
OR estimates for the independent variables were calcu-
lated, as for the previous model (exp(b)). The 95%
Bayesian credible interval (BCI) was used as an indicator
of significance for the covariates. The coefficients are
considered as significant if their 95% BCIs do not include
zero, or their ORs do not include 1 (32).

Group level variation is examined with the intra-class
correlation coefficient (ICC), representing the proportion
of overall residual group-level variance. Here, ICC can
be defined as sa

2/(sa
2+se

2). The population-level var-
iance (se

2) in a logistic distribution can be presented as
p2/3=3.29 (32, 33). ICC value close to zero signifies
very small variation among groups, while a larger value
shows greater variation and justifies the use of a hier-
archical model instead of an ordinary binary model (34).
Since additional data were not available to evaluate the
predictive abilities of the hierarchical models, cross-
validation techniques were applied for model validations.
The Bayesian leave-one-out (LOO) cross-validation
information criterion, along with their standard errors,
were estimated for each model (35). Model comparisons
were performed between ordinary logistic regression and
hierarchical logistic regression to examine how model
performances have changed with consideration of group-
level indicators.

Results

Traffic Crash Characteristics Under Stay-at-Home
Policies

In between the governor’s announcements of school clo-
sure and stay-at-home order, daily traffic volumes in
Franklin County, Ohio, declined, reaching their lowest
points after the end of March, yet soon began to rise
(Figure 1). As a collective social practice, it is challenging
to determine a starting point for social distancing under
stay-at-home guidance. For this analysis, a 55-day period
is defined, beginning soon after the school closing
announcement, and ending in early May when volumes
began to rise in earnest from their lowest levels.
However, certainly some social distancing existed before
this point and beyond this point, and may even manifest
in a lasting change to volumes, as will be considered in a
later discussion of the implications of the findings.

During this stay-at-home period, traffic crashes chan-
ged in type, time of day, and severity as compared with
both a non-stay-at-home period immediately preceding
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it, as well as a year-on-year comparison with the same
55-day period in 2019. A simple comparison of means
among these groups shows some large differences in types
of crashes during stay-at-home (Table 2). Rear collisions
accounted for 19% of crashes, compared with 35.5% one
year earlier, while crashes involving a single vehicle only
were nearly doubled from 12.9% to 25.3%. Crashes in
which the reporting officer cited speeding as a factor were
nearly doubled under stay-at-home compared with the
previous year at 15.4%. Additionally, crashes involving
alcohol and drugs were both higher, being indicated in
5.3% and 3.2% of crashes, respectively. Crashes were
much less frequent under the stay-at-home period, aver-
aging only 24.4 per day compared with 75.8 per day in
the prior year. Crashes per each unit of a relative index
of traffic volume showing daily variations were only
slightly lower in the stay-at-home period compared with
the previous year. Additionally, the severity of these
crashes increased, with 3.3% being incapacitating or fatal
compared with 1.5% the previous year. Finally, a time
analysis of the distribution of crashes throughout the day
shows fewer crashes occurring in traditionally congested
peak travel times, which helps explain the fewer incidents
of rear collisions. Figure 2 shows that under the stay-at-
home guidance, crashes were less prevalent during morn-
ing peaks and slightly less prevalent during evening
peaks. Yet, they were slightly more prevalent during off-
peak periods later in the day.

Relating Stay-at-Home Policies to More Severe Crashes
Through Daily Traffic Volume

Table 3 shows the results from both multinomial logistic
regression models, which include identical control vari-
ables. The binary variable of interest for the first model

indicates if each crash occurred during a period of stay-
at-home policies that is defined as being between March
15 and May 8, 2020, as depicted by the shaded time
period in Figure 1. In the second model, the variable of
interest is replaced with a continuous variable whose
value for each crash represents daily traffic volume on
that day relative to other days in the study period. The
possible values for this variable comprise the moving
average depicted in Figure 1.

In the first model, the stay-at-home time period bin-
ary variable is associated with increased severity, show-
ing that crashes in this period were more likely to be
incapacitating or fatal when controlling for other crash
attributes. While relatively low, the odds of an incapaci-
tating or fatal crash more than double under stay-at-
home policies. In the second model, the daily volume
scale variable is associated with a lower likelihood of an
incapacitating or fatal crash, showing that higher daily
volumes are associated with lower likelihood of a crash
resulting in injury or death. Given the drop off in volume
that characterizes the stay-at-home period, and that
these variables play the same function in each model, this
points to volume being fundamental to how stay-at-
home policies influence the severity of crashes. For the
control variables, the models show nearly identical
results. Speeding (as indicated by reporting officers),
higher posted speed limits, and not using seat belts are
strongly associated with more severe categories of injury
in both models, as are particular types of crashes, includ-
ing head-on, angled, and pedestrian or cyclist. The use of
drugs and being a senior driver are associated with a
higher likelihood of an incapacitating or fatal crash in
both specifications.

Our modeling of traffic volumes and categories of
crash severity has demonstrated that lower volumes from
stay-at-home policies are related to more severe crash

Figure 1. Changes in urban interstate traffic volume across stay-at-home and non-stay-at-home periods in Franklin County, Ohio
(February–May 2020).
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outcomes. However, the mechanism of that relationship
has, as yet, not been demonstrated. It is hypothesized this
mechanism to be higher average speeds on some classes
of roads; this is examined below.

The Effects of Increased Road Speeds on the Severity
of Crashes by Road Type

The result from one-sided Fisher exact test indicates that
the proportion of fatal crashes is significantly higher dur-
ing the stay-at-home period than the non-stay-at-home
period, at a 95% confidence level (p-values 0.04).
Figure 3 presents the distribution of crash severity in
relation to the higher speed measures at different FRCs,
respectively, for the non-stay-at-home and stay-at-home
periods. Each data point in Figure 3 indicates a crash.
Regardless of road functional class, the non-stay-
at-home period indicates little-to-no variation in the
speed measures, unless the crash involves a fatality.
Additionally, the fatal crashes occurring on highways
and local roads during this period had a lower average
speed than the reference level. On the contrary, during
the stay-at-home period, the severity of crashes tends to
be higher with involvement of higher speeds, especially
in cases of crashes on highways and interstates. Also, the
fatal crashes on arterial and major collector roads
involved a higher speed compared with the non-fatal
crashes. However, no fatal crashes on local roads were
found within the dataset. Based on these findings, this
study intends to evaluate the probability of a crash being
fatal when there are higher-than-typical speeds involved
in both non-stay-at-home and stay-at-home periods.

Table 4 indicates posterior summaries for the Bayesian
hierarchical binary logistic model. The results indicate
that the probability of a crash being fatal on any road
segment of Franklin County was 0.26% before March
15, 2020. Moreover, higher speeds do not significantly
influence the probability of a crash being fatal during the
non-stay-at-home period, since the 95% Bayesian confi-
dence interval includes zero. However, the probability of
a crash being fatal was 0.42% during the stay-at-home
period. Besides, higher speeds appear to have a significant
positive influence on the probability of a crash being fatal
during this time period. As estimated by the models, the
probability of a crash being fatal increases by a factor of
1.21 with a unit (1mph) increase in speed above the refer-
ence level during the stay-at-home phase.

The results also indicate that crashes occurring on
highways, interstates, and local roads have a higher prob-
ability of being fatal (0.39 and 0.35, respectively) than the
crashes on principal arterial and major collector roads

Table 2. Descriptive Statistics for Stay-at-Home and Non-Stay-
at-Home Periods in Franklin County, Ohio (February 1–May 8)

Year-on-year
2019

Pre-stay-
at-home

2020

Stay-at-
home
2020

Days in time period 55 43 55
Total crashes 4,170 3,950 1,342
Mean crashes per day 75.8 91.8 24.4
Mean daily traffic

volume index (1–
100)

80.1 70.6 27.0

Mean daily crashes per
volume index

0.95 1.3 0.90

Severity: Fatal (%) 0.29 0.36 0.71
Incapacitating (%) 1.75 1.1 2.6
Non-incapacitating
(%)

13.8 14.5 21.0

Possible injury (%) 10.7 11.0 11.2
No injury (%) 73.4 73.1 64.6

Speeding indicated (%) 7.3 8.5 15.4
Alcohol indicated (%) 4.3 4.3 5.3
Drugs indicated (%) 1.6 1.2 3.2
Distraction indicated

(%)
5.1 4.1 4.9

Senior driver (%) 12.1 11.4 8.9
Young driver (%) 34.2 33.3 33.1
Unrestrained (mean

occupants)
0.46 0.55 0.86

Posted speed (mean
mph)

40.6 38.8 37.9

Lanes: One or two (%) 36.1 41.5 51.0
Three or four (%) 45.0 40.3 32.2
Five or more (%) 18.9 18.1 16.8

Highway (%) 23.1 19.4 19.3
Type: Rear end (%) 35.5 31.1 18.9
Head on (%) 1.5 1.8 2.1
Backing (%) 3.6 4.1 4.2
Sideswipe (%) 21.1 20.0 16.5
Angled (%) 17.0 17.9 19.1
Turning (%) 1.3 1.1 2.4
Parked car/object (%) 16.4 20.0 31.5
Pedestrian/bike (%) 2.0 2.5 3.0
Animal (%) 0.9 0.7 0.7
Other/unknown (%) 0.7 0.7 1.5

Single vehicle only (%) 12.9 14.6 25.3
Location: not an

intersection (%)
73.2 70.4 70.5

Four-way
intersection (%)

14.4 17.0 16.0

Other intersection
(%)

8.2 9.2 8.2

Ramp (%) 3.1 2.5 3.7
Other (%) 1.1 0.9 1.5

Daylight (%) 74.1 62.2 65.6
Inclement weather (%) 15.0 24.6 21.4
Peak period (%) 32.9 29.4 22.4
Weekend (%) 23.0 23.7 26.2

Note: Crash statistics reflect crashes for which details exists, numbering

3,492, 3,305, and 1,130 for each category, respectively.
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Figure 2. Difference in Kernel density estimation of crash hour between stay-at-home and non-stay-at-home periods in Franklin County,
Ohio (February 1–May 8, 2020).

Table 3. Multinomial Logit Results on Severity of Crash (February 1–May 8, 2020)

(Base: none/possible injury)

Model 1 (stay-at-home period binary) Model 2 (volume scale)

Non-incapacitating Incapacitating/fatal Non-incapacitating Incapacitating/fatal

Coef. Sig. OR Coef. Sig. OR Coef. Sig. OR Coef. Sig. OR

Stay-at-home period binary 0.51 *** 1.67 0.94 *** 2.56 na na na na
Daily traffic volume index na na na na 20.01 *** 0.99 20.02 *** 0.98
Speeding indicated 0.48 *** 1.61 0.75 ** 2.13 0.47 *** 1.61 0.75 ** 2.12
Alcohol indicated 20.03 0.97 0.12 1.13 20.03 0.97 0.11 1.12
Drugs indicated 0.44 1.55 1.90 *** 6.67 0.46 1.59 1.93 *** 6.90
Distraction indicated 0.27 1.31 0.01 1.01 0.28 1.33 0.04 1.04
Senior driver 0.17 1.18 0.76 ** 2.14 0.17 1.18 0.77 ** 2.16
Young driver 20.09 0.91 0.12 1.13 20.09 0.91 0.13 1.14
Unrestrained occupants 0.91 *** 2.49 1.03 *** 2.80 0.92 *** 2.50 1.03 *** 2.81
Type of crash (base: rear)
Head-on 1.05 *** 2.85 3.21 *** 24.8 1.05 *** 2.86 3.21 *** 24.7
Backing 21.16 *** 0.31 1.34 3.80 21.15 *** 0.32 1.35 3.88
Sideswipe 20.64 *** 0.53 0.42 1.52 20.64 *** 0.53 0.41 1.50
Angled 0.90 *** 2.45 1.75 *** 5.75 0.90 *** 2.45 1.74 *** 5.68
Turning 20.14 0.87 1.35 3.84 20.14 0.87 1.32 3.76
Parked car/object 20.34 ** 0.71 1.51 *** 4.52 20.34 ** 0.71 1.49 *** 4.45
PedBike 3.04 *** 20.81 5.93 *** 376 3.03 *** 20.80 5.92 *** 371
Animal 22.04 * 0.13 210.56 0.00 22.05 * 0.13 210.59 0.00
Other 20.41 0.67 2.14 * 8.48 20.39 0.67 2.16 * 8.68

Posted speed (mph) 0.03 *** 1.03 0.11 *** 1.12 0.03 *** 1.03 0.11 *** 1.12
Number of lanes (base 1 or 2)
Three or four 0.11 1.11 0.06 1.06 0.11 1.11 0.05 1.05
Four or more 0.38 ** 1.46 20.54 0.58 0.38 ** 1.46 20.53 0.59

Freeway/highway 20.22 0.80 21.57 *** 0.21 20.21 0.81 21.56 *** 0.21
Location (base: not an intersection)
Four-way intersection 0.20 * 1.22 0.30 1.35 0.19 1.21 0.28 1.33
Other intersection 20.31 * 0.74 20.26 0.77 20.31 * 0.74 20.26 0.77
Ramp 0.07 1.08 20.04 0.96 0.07 1.07 20.02 0.98
Other 21.63 ** 0.20 0.18 1.20 21.64 ** 0.19 0.12 1.13

Daylight 20.04 0.96 20.08 0.92 20.04 0.96 20.08 0.92
Inclement weather 0.10 1.11 20.09 0.92 0.09 1.09 20.12 0.89
Peak travel time 20.10 0.91 20.39 0.68 20.09 0.91 20.40 0.67
Weekend 0.02 1.02 0.09 1.10 20.29 ** 0.75 20.47 0.62
Contant 23.16 0.04 210.36 0.00 22.31 0.10 28.76 0.00

Pseudo R2 = .1471 Pseudo R2 = .1468

Note: Coef. = coefficient; Sig. = significance; na = not applicable; OR = odds ratio.
*p\0.10; ** p\0.05; *** p\0.01.

8 Transportation Research Record 00(0)



(0.19 and 0.18, respectively) during the non-stay-at-home
period. Later in the stay-at-home period, all road classes
experienced around 0.5% probability of a crash being
fatal except the local roads (0.20% probability).

The ICC values of the hierarchical models for both
non-stay-at-home and stay-at-home periods are 28.32%
and 31.85%, respectively. These results suggest that
28.32% and 31.85% of the overall model variances of
the non-stay-at-home and stay-at-home period, respec-
tively, can be explained by the group-level or FRC var-
iances. These ICC values justify the appropriateness of
using hierarchical models for this particular analysis. A
comparison of models using leave-one-out cross-valida-
tion information criterion (LOOIC) estimates supported
this decision.

Figure 4 indicates the predicted probability of a crash
being fatal with increased speed based on the hierarchical
model of crashes (Table 4). As shown in Figure 4, the
increase in the probability of a crash being fatal is very
low with increased speed above reference level during the

non-stay-at-home period. In contrast, the probability
starts to rise for all classes when the average daily speed
of a segment is higher than its reference speed during the
stay-at-home period. According to the model, the prob-
abilities of crashes being fatal are 3%, 4.4%, 4.5%, and
4%, respectively, for local roads, major roads, arterial
roads, and highways when the average daily road speed
is 10mph higher than its reference speed. The probabil-
ities further increase to 9.4%, 13.7%, 13.5%, and 12.2%,
respectively, for the previously mentioned FRCs with the
increase of average road speed 15mph higher than its ref-
erence speed.

Conclusions

Under a period of stay-at-home policy during which traf-
fic volumes declined by more than 60%, the total number
of crashes in Franklin County dropped from an average
of 92 per day to just 24 per day. However, among the
remaining crashes, the percentage that were

Figure 3. Relationship between crash severity and speed.
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incapacitating or fatal increased. The analysis of crash
type and time of crash showed that crashes were less
likely to occur during the morning peak period, and that
fewer crashes involved multiple vehicles or were rear col-
lisions. The multinomial logistic modeling of the relation-
ship of decreased traffic volumes indicates that severe
crash outcomes were more likely under stay-at-home
guidelines because of that period’s decreased volumes.
The hierarchical binary logistic modeling of the relation-
ship of increased road speeds and the likelihood of
crashes being fatal showed that fatal crashes were related
to higher-than-normal speeds under the stay-at-home
policy but not before, especially on highways and arterial
roads. Additionally, a higher percentage of crashes were
designated by police reports as being caused by speeding
behavior, and to involve alcohol or drugs.

Combined, these analyses suggest that the overall
effect of stay-at-home policies on crash severity through
speed was threefold. Firstly, there are fewer individuals
that are spending time on the roads caught in traffic con-
gestion, resulting in fewer of the types of collisions that
occur in close quarters and at lower speeds, which tend
to have lower severity. Secondly, with road users free
from congestion, they travel at higher speeds, which are
associated with more-severe crashes. Thirdly, drivers
engage in riskier behavior by more frequently engaging
in speeding, and driving under the influence. Some of this
speeding behavior may be extreme, as evidenced by this
analysis, as well as a reported rise in the number of speed-
ing tickets issued over 100mph under the stay-at-home
period (36). Under stay-at-home policies, this increased
risk of a crash being more severe is disproportionately

Table 4. Posterior Summaries of Bayesian Hierarchical Model

Non-stay-at-home period Stay-at-home period

Coef. 2.5 BCI 97.5 BCI

Mean prob.
for intercepts/

OR for coefficients Coef. 2.5 BCI 97.5 BCI

Mean probability
for intercepts/

OR for coefficients

Population-level estimates
Intercept 25.95 28.06 24.34 0.26* 25.47 27.96 23.61 0.42*

Speeding 0.04 20.10 0.18 1.04 0.19 0.01 0.39 1.21*

Group-level intercepts
Highway and Interstate 25.54 29.19 21.65 0.39* 25.27 29.66 20.98 0.51*

Other principal arterial 26.28 210.86 22.96 0.19* 25.26 29.65 20.93 0.52*

Minor arterial/
major collector

26.34 210.86 23.10 0.18* 25.27 29.61 20.98 0.51*

Minor collector/local road 25.66 29.51 21.72 0.35* 26.22 213.68 22.61 0.20*

SD in group-level intercept 1.14 0.03 4.57 na 1.24 0.03 6.33 na
ICC (%) 28.32 31.85

Note: Coef. = coefficient; BCI = Bayesian credible interval; ICC = intra-class correlation coefficient; na = not applicable; na = not applicable; OR = odds ratio; SD =

standard deviation.
*Indicates significance of estimates at 95% confidence interval.

Figure 4. Predicted probability of a crash being fatal for different functional road classes (FRCs).
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borne by lower-income ‘‘essential workers’’ who do not
have options to conduct work from home.

There are several important limitations to these analy-
ses. Firstly, the data for traffic volumes and speeds were
not detailed to reflect their exact values at the time and
point of each crash. For traffic volumes, the authors only
had access to volumes on a major highway summarized
by day, which were used to create an index of relative
volume changes over time. Similarly, for speeding data,
the only thing calculated was average daily speeds for
the road segment of each crash. Also, the real-time speed
data was missing for a few segments because of the mis-
match in the road network defined by ODOT and
INRIX. Therefore, the Bayesian hierarchical model was
limited to the crash points that had average daily speeds
available. Besides, the differences observed in the effects
of explanatory variables between the pre- and post-stay-
at-home period models can be an outcome of chance.
This modeling approach is limited in evaluating the sta-
tistical significance of the changes in influence of vari-
ables over time. However, this level of detail was
adequate in fulfilling the model purpose. Additionally,
the choice of a multinomial logistic regression model
does not take advantage of the ordinal level of measure-
ment of severity, but, again, given the comparison across
periods, this is considered to be adequate. Finally, both
the models are based on the premise that a neat division
exists between the period in which people were traveling
and that in which they were ‘‘staying home.’’ This is
unlikely, as some individuals would be more or less cau-
tious, resulting in blurring of that boundary, which
would have some effect on the results.

Discussion

The usefulness of the findings is in considering how
transportation professionals and policymakers can be
prepared for two types of future scenarios involving
reduced volume on roads, the first of which is additional
temporary shocks to local travel demand. These may
again be in response to a pandemic, but could also result
from natural disasters, environmental conditions, or eco-
nomic conditions, possibly relating to climate change. In
such cases, certain purposes of travel might again be con-
sidered essential, including work trips by the same essen-
tial workers who, under COVID-19, tended to be lower
income. In any event, this would almost certainly include
the travel of first responders. This paper demonstrated
that, under these reduced volume conditions, higher
speeds are responsible for more-severe crashes on roads,
including at time periods in which roads would previ-
ously have been congested. A simple policy response in
such a case would be to use existing variable message
signs to warn users against speeding and reckless driving

in light of the increased risk of more-severe crashes on
major roads. Although, one likely challenge to this
approach is that these signs may be in use for messaging
related to the crisis that precipitated the reduced demand.
A step further could entail the temporary closure of
selected lanes on highways and arterials roads as a
traffic-calming measure. Finally, the strain that individu-
als experience in such a time may be linked to reckless
driving and driving under the influence, as evidenced by
this analysis. In light of this paper, future research might
investigate these relationships and their effects on safety
more deeply from the onset of a similar situation.

The second future scenario to consider is the possibil-
ity that social distancing practices, such as working more
from home, dining more at home, and shopping less fre-
quently, might become more prevalent in the long term.
The notion of urban recalibration describes a mode of
planning that bases decisions on wellbeing—including
safety—rather than a goal of increasing mobility—a pre-
vious paradigm that promoted road-oriented develop-
ment (37). The current road network of the Columbus
metropolitan area was developed to accommodate a level
of demand for automobility forecast based on measure-
ments of current travel in relation to planned develop-
ment. However, in a ‘‘new normal’’ scenario in which
social distancing practices continue to reduce travel
demand in a lasting way, this network would be overspe-
cified, providing more capacity than is warranted. While
resulting increased speeds will improve mobility, this
comes at a cost of safety. In the pandemic response,
these risks were borne more by lower-income essential
workers who have less control over work trips, such as
the option to work from home. This challenge of higher-
than-needed road capacity is one that is also recently
faced by shrinking cities such as Detroit (38). Shefer
argued that, because of the higher risk of lower volume
and higher speed conditions, a ‘‘socially optimal level of
congestion’’ may exist (39). The findings of this study
support this idea, and point to a potential need to recali-
brate some road networks if travel demand were to
remain lowered in the long run. Policies such as complete
streets, road diets, and making shared spaces can recali-
brate the capacity of roads while supporting other plan-
ning goals (37). The long-term effects of COVID-19 on
travel patterns are as yet unknown; however analyzing
the short-term effects of stay-at-home policies has shown
that lower volumes create higher speeds, which can pro-
duce risks of more severe crashes for road users.
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