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A B S T R A C T

Existing accessibility measures mainly focus on the physical limitations of travel and ignore travelers’ percep-
tions, behavior, and socio-economic differences. By integrating approaches in time geography and travel 
behavior, this study introduces a bottom-up inclusive accessibility concept that aggregates individual-level travel 
perceptions across socio-economic groups to evaluate their multimodal access to opportunities. We classify 
accessibility constraints into hard constraints (physical space-time limitations to travel) and soft constraints 
(perceptual factors influencing travel, such as safety perceptions, comfort, and willingness to travel). We cate-
gorize travelers into 12 mutually exclusive socio-economic groups from a mobility survey dataset of 477 trav-
elers. We apply a support vector regressor-based ensemble algorithm to estimate network-level walking 
perception scores as soft constraints for each social group. We derive group-specific inclusive accessibility 
measures that consider space-time limitations from transit and sidewalk networks as hard constraints and 
minimize the group-specific soft constraint to a certain threshold. Finally, we demonstrate the effectiveness of 
group-specific inclusive accessibility by comparing it with the classic access measure. Our study provides sci-
entific evidence on how people of varying socio-economic statuses perceive the same travel environment 
differently. We find that socio-economically disadvantaged communities experience higher mobility barriers and 
lower accessibility while walking and using transit in Columbus, OH. Our study demonstrates a transition from 
person- to place-based accessibility measures by sequentially quantifying mobility perceptions for individual 
travelers and aggregating them by social groups for a large geographic scale, making this approach suitable for 
equity-oriented need-specific transportation planning.

1. Introduction

Urban planners frequently rely on accessibility metrics, an evalua-
tion of people’s potential mobility, to assess and improve transportation 
system performance (Boisjoly & El-Geneidy, 2017). Typically, these 
metrics are estimated in a generalized form for populations residing 
within an identifiable geographic area, such as a neighborhood or city, 
considering their mode-specific access to essential opportunity locations 
(e.g., job, food, healthcare, and education) (El-Geneidy & Levinson, 
2022). These place-based measures, however, often overgeneralize 
accessibility, assuming it is socially invariant within a given space 
(Miller, 2007). This can lead to inaccurate and flawed transportation 
project evaluations and decision-making, particularly from the equity 

perspective. An alternative approach, person-based accessibility mea-
sures, estimates potential mobility at an individual level (Miller, 2007). 
Despite its ability to better capture the spatio-temporal complexities of 
travel, the disintegrated nature of the person-based measure, along with 
limited guidance for generalizing it to a larger scale, hinders its usability 
in urban planning practices (Geurs & Van Wee, 2004).

Additionally, classic accessibility measures mainly consider the 
physical, space-time constraints (e.g., land use-transportation environ-
ment, and time) and overlook the behavioral, perceptual, and social 
aspects of travel (El-Geneidy & Levinson, 2006; Geurs & Van Wee, 
2004). People of different ages, gender, income, and race perceive 
physical environments and time differently due to their unique past 
travel experiences, attitudes, and lifestyle choices (Alfonzo, 2005; Hsu & 
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Lee, 2017; Iseki & Smart, 2012; Ma & Cao, 2019; Singleton & Clifton, 
2014). These diverse travel perceptions reflect how people feel about 
traveling across certain networks and places and make their day-to-day 
travel decisions (Aziz et al., 2018; Delbosc & Currie, 2012; Ma & Cao, 
2019; Spears, Houston, & Boarnet, 2013). Travel perceptions serve as a 
bridge between the locations and activities people can reach, their po-
tential mobility, and the ones they choose to travel in reality, their actual 
mobility. Classic accessibility measures, due to being an estimation of 
the former while neglecting the latter, often overestimate the perceived 
ability and willingness of travelers to reach places, especially those from 
socio-economically disadvantaged communities (Ryan & Pereira, 2021; 
Van der Vlugt, Curl, & Wittowsky, 2019).

Data collection is a key challenge in the existing perceived accessi-
bility research incorporating travel behavior and perceptions. While 
measuring access, these studies evaluate people’s perceptions (e.g., 
travel willingness, ease, convenience, and satisfaction) toward trans-
portation infrastructure, mode, travel time, and activities (Cheng & 
Chen, 2015; Hawthorne & Kwan, 2012; Hess, 2009; Lattman, Olsson, & 
Friman, 2018; Ryan & Pereira, 2021; Ryan & Robinson, 2016; Van der 
Vlugt et al., 2019; Van der Vlugt, Curl, & Scheiner, 2022). These per-
ceptions vary widely among different genders, ages, and social groups, 
underscoring the need to integrate travel perceptions to mitigate over-
estimations in existing measures, as well as to capture the social, gender, 
and age differences in accessibility (Jamei, Chan, Chau, Gaisie, & Latt-
man, 2022). However, these studies, relying solely on primary data and 
statistical approaches (Jamei et al., 2022), are unable to comprehen-
sively capture the spatiotemporal heterogeneities in travel perceptions 
considering individuals’ socio-economic backgrounds as well as the 
physical characteristics of the land use-transportation environments. 
One way to overcome this data limitation is to augment the perception 
data through additional machine learning (ML) predictive modeling to 
depict an overall picture of travel perceptions and their spatial vari-
abilities across road environments, modes, and socioeconomic 
communities.

This study introduces a novel, bottom-up inclusive accessibility 
concept that first integrates travel perceptions into multimodal acces-
sibility estimated for an individual and then demonstrates a method for 
aggregating the measure across socio-economically diverse commu-
nities. This measure categorizes accessibility constraints into two parts: 
hard constraints (i.e., objective, non-negotiable, physical barriers to 
travel) and soft constraints (i.e., subjective, negotiable, perceptual as-
pects of travel). We conceptualize inclusive accessibility as a subset of 
classic accessibility that is physically accessible and accounts for some 
psychological barriers (e.g., perceptions and acceptance of safety and 
comfort) that individuals and communities experience in their day-to- 
day travel.

This study develops a hierarchical modeling approach to measuring 
inclusive accessibility across diverse social groups. The objectives of this 
paper are to (1) design a group-based inclusive access measure that in-
corporates hard and soft constraints of social groups, and (2) demon-
strate the variations in classic and inclusive access measures across 
social groups. We conducted a mobility survey in Columbus, OH, USA, to 
gather detailed individual-level travel perception data to represent soft 
constraints. Since the mobility survey dataset only contains soft 
constraint measures for certain streets of Columbus, we develop a sup-
port vector regressor (SVR)-based ensemble model that predicts 
network-specific soft constraints for 12 mutually exclusive social groups, 
categorized based on their income, race, and gender, and then apply 
these estimates in measuring classic and inclusive access.

This study has several contributions. First, inclusive accessibility is 
an advancement of existing space-time measures due to its consideration 
of perceptual factors of travel in measuring multimodal accessibility 
across individuals and social groups. This incorporation of travel per-
ceptions makes accessibility measures more realistic and more likely to 
resemble peoples’ actual travel behavior. Second, the group-based 
approach enables a transition of inclusive access from person- to 

place-based measures. Instead of measuring access for a particular in-
dividual or the overall population, we measure spatial variations in 
travel perceptions and inclusive access for social groups. This approach 
allows us to overcome the limitations of both person- and place-based 
measures and will help create policies that maximize accessibility to 
each social group. Lastly, the group-based inclusive measure, due to its 
capability to capture the spatial-social differences in travel needs and 
accessibility, is more applicable in designing need-specific trans-
portation interventions.

2. Conceptual foundations

The inclusive access concept advances classic access measures by 
integrating both hard and soft constraints of travel. Sections 2.1, 2.2, 
and 2.3, respectively, discuss: the theoretical foundations of classic 
accessibility concepts, perceived accessibility as an extension of classic 
measures, and inclusive accessibility as an advancement of previously 
established perceived accessibility measures. Section 2.4 elaborates 
another crucial contribution of this paper – utilizing ML-based ensemble 
modeling in quantifying group-specific soft constraints.

2.1. Classic accessibility

Classic accessibility measures evaluate people’s ability to reach 
essential services and opportunity locations by traditionally focusing on 
the physical characteristics of the land use-transportation environment 
and time limitations of travel and activity participation (Levinson & Wu, 
2020). Classic accessibility measures predominantly consider three 
objective criteria of travel: 1. Spatial distribution of service and oppor-
tunity locations, 2. Availability of transportation networks and modes, 
and 3. Personal, activity- or mode-related time limitations (El-Geneidy & 
Levinson, 2006). Based on these basic components, the accessibility 
measure evaluates the physical ability of individuals and communities to 
reach opportunity locations using a travel mode within a time budget 
(El-Geneidy & Levinson, 2006).

Accessibility measures can be categorized into two types based on 
the scale of analysis, namely place-based and person-based (Levinson & 
Wu, 2020; Miller, 2007). Place-based measures are proximity-based 
measures that evaluate potential mobility and activity participation 
for people residing in a geographic area (e.g., neighborhood and city). 
Such measures support evaluating mode-specific accessibility for any 
geographic boundaries, making it a popular evaluation metric in 
transportation planning (El-Geneidy & Levinson, 2022; Geurs & Van 
Wee, 2004). However, place-based approaches assume equal accessi-
bility for all residents within the same geographic space and cannot 
capture the spatiotemporal complexities and idiosyncrasies of travel 
across people and communities (Miller, 2007).

In contrast, person-based measures follow time geographic theory 
and define an individual’s potential mobility based on their time allo-
cation across space (Hagerstrand, 1970; Miller, 2017). Person-based 
measures effectively capture the underlying heterogeneities in travel 
and activities across individuals. Yet, these measures are invariant to 
spatial scales and geographic boundaries with limited scope for gener-
alization for a larger population and application in large-scale planning 
practices (Kwan & Weber, 2008; Miller, 2007). A research gap exists in 
designing a method to transition between scales that avoids the over-
generalization of place-based measures while also being transferable to 
a larger scale from person-based measures.

2.2. Perceived accessibility

Perceived accessibility measures, extending classic ones, consider 
both subjective and objective constraints to better understand social, 
demographic, and travel-related differences in accessibility (Cheng & 
Chen, 2015; Hawthorne & Kwan, 2012; Hess, 2009; Lattman et al., 
2018; Ryan & Pereira, 2021; Ryan & Robinson, 2016; Van der Vlugt 
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et al., 2019; Van der Vlugt et al., 2022). Subjective constraints, herein, 
encompass travel behavior and perception. Perception includes in-
dividuals’ attitudes, affect, or feelings toward the physical environment, 
often expressed as ease, convenience, satisfaction, and overall experi-
ence with infrastructure, mode, and time usage during daily travel and 
activity participation (Jamei et al., 2022; Le & Carrel, 2021). A person’s 
self-perceived abilities, travel willingness, and preferences are also 
considered subjective constraints that influence their evaluations of 
potential mobility (Pot, Van Wee, & Tillema, 2021). The consideration 
of both subjective and objective constraints makes perceived accessi-
bility a lower estimate than the classic measures using objective con-
straints only, indicating an overestimation of the latter (Cheng & Chen, 
2015; Kwan, 1999; Lattman et al., 2018; Lattman, Olsson, & Friman, 
2016; Pot et al., 2021; Ryan & Robinson, 2016; Van der Vlugt et al., 
2019).

Although existing literature extensively discusses the theoretical 
frameworks of perceived accessibility measures (De Vos, 2022; Dodge & 
Nelson, 2023; Pot et al., 2021), in most cases, they suffer from data and 
method limitations to fully operationalize their concepts. Most studies in 
this area rely on primary data collected through interviews and tele-
phone surveys and apply statistical methods to summarize travel per-
ceptions and accessibility for socio-economic communities residing over 
large geographic spaces (Jamei et al., 2022). In one way, these perceived 
accessibility measures advance traditional place-based approaches by 
highlighting differences in potential mobility as perceived by diverse 
socio-economic communities, which classic measures for the entire 
population cannot capture (Lattman et al., 2018; Pot et al., 2021; Ryan & 
Pereira, 2021; Van der Vlugt et al., 2019). However, existing perceived 
access measures can still be an overestimation, as their limited primary 
data does not allow them to capture the spatial-temporal variabilities in 
perceptions across road environments and activity locations that people 
encounter during their daily travel.

Few studies incorporate travel perceptions into time-geographic 
person-based access measures (Kwan, 1999; Kwan & Ding, 2008). 
Despite their preciseness in capturing the spatiotemporal variabilities in 
individual-level travel perceptions, these individual-level perceived ac-
cess measures may contain uncertainties because they are less repre-
sentative of broader socio-economic communities and thus unable to 
reflect the social differences in potential mobility. Additional research is 
needed to make the person-based measure scalable, representative, and 
appropriate for adoption in practice.

2.3. Inclusive accessibility

We propose the concept of inclusive access to further advance 
existing perceived accessibility measures. The inclusive accessibility 
concept integrates the spatial-social variations in perceptions into 
accessibility measures for individuals and communities. The inclusive 
accessibility concept classifies accessibility constraints into hard and soft 
constraints (Kar, Le, & Miller, 2023). The hard constraints are nonne-
gotiable physical and objective constraints imposed by our surrounding 
spatio-temporal environment, such as spatial distribution of facilities, 
personal travel time budget, and availability of road infrastructure and 
transportation services. Individuals must comply with these non- 
negotiable factors to make a trip and participate in activities. The soft 
constraints, on the other hand, are subjective and perceptual, also 
implicitly embedded in space and time. Examples of soft constraints are 
travel willingness, safety perceptions, and network and time prefer-
ences. While these factors do not directly impede individuals from 
traveling, they indirectly impact individuals’ day-to-day travel 
decisions.

We conceptualize inclusive access as a subset of classic access. As 
mentioned, the classic accessibility measure evaluates a traveler’s 
physical ability to reach places. It identifies the geographic coverage 
from where any traveler can reach the nearest opportunity locations, 
given their fixed travel time budget and spatial and temporal limitations 

of transportation services and activities. Inclusive accessibility takes a 
step further by taking into account the variations in access across space, 
among socio-economic groups and their travel perceptions. In this sense, 
inclusive accessibility evaluates both the physical and perceived ability 
of a traveler of certain socio-economic characteristics to reach oppor-
tunities. The geographic coverage, identified by inclusive access, thus 
indicates the area from where any travelers of the specified socio- 
economic community are physically and perceptually capable of 
reaching the nearest opportunity locations, given their hard and soft 
constraints.

Using a mobility survey dataset conducted in Columbus, OH, our 
previous study discusses the person-based inclusive access measure (Kar 
et al., 2023). This person-based measure successfully highlights the 
heterogeneities in travel perceptions across individuals. Yet, similar to 
previous person-based perceived access measures, it has certain data 
and modeling limitations, such as expensive data requirements and 
unknown transferability of one person-based model in predicting 
accessibility for another person (Kar et al., 2023). Most importantly, 
analyzing soft constraints and inclusive access at an individual scale 
makes it less appropriate for large-scale planning practices. Addressing 
the limitations of prior work, this paper advances the inclusive access 
measure by aggregating it across socio-economically diverse 
communities.

Another important contribution of the inclusive access measure lies 
in tackling the perception data limitations using ML prediction algo-
rithms to ensure comprehensive data coverage of the soft constraints. 
Existing perceived accessibility research mostly relies on primary data 
collection and statistical modeling approaches, mainly different forms of 
descriptive statistics and discrete choice models. These statistical models 
are highly interpretable but require rigid assumptions about data dis-
tribution and produce flawed outputs in cases of multicollinearity, 
endogeneity, and unobserved heterogeneity (Hagenauer & Helbich, 
2017; Zhang, Li, Pu, & Xu, 2018). In recent years, machine learning (ML) 
classifiers/regressors (e.g., decision tree-based models, support vector 
machines, and neural networks) have become popular in predictive 
travel behavior modeling as they are free of such rigid assumptions 
(Hagenauer & Helbich, 2017; Koushik, Manoj, & Nezamuddin, 2020; 
Ramírez, Hurtubia, Lobel, & Rossetti, 2021; Zhao, Yan, Yu, & Van 
Hentenryck, 2020). Despite being a black box with low interpretability, 
ML models support high prediction ability as they compute the intricate 
non-linear relationship between dependent and independent variables 
(Hagenauer & Helbich, 2017; Zhang et al., 2018). However, most of the 
past research using ML is focused on predicting mode choice, route 
choice, activity generation, and scheduling (Hagenauer & Helbich, 
2017; Koushik et al., 2020; Zhao et al., 2020) where we find very few 
studies using ML to predict travel perceptions (Li, Jin, Sun, Jia, & Li, 
2022; Ramírez et al., 2021). In this study, we leverage ML to predict 
individuals’ walking perceptions and demonstrate a mechanism to use 
that knowledge to model accessibility across social groups.

2.4. Ensemble modeling

Ensemble modeling is an ML-based technique where multiple models 
are combined to make more accurate and robust predictions by 
leveraging the diversity and collective intelligence of the individual 
models (Wu & Levinson, 2021). Ensemble modeling follows a two-step 
process. First, we design multiple base models (e.g., random forest, 
support vector regressor), known as weak learners, because they make 
predictions that may be only slightly better than a random guess. In the 
next step, an aggregation algorithm, either deterministic (e.g., majority 
voting or averaging) or model-based (e.g., through a classifier/regres-
sor), combines the weaker learners into a strong meta-learner for more 
accurate predictions (Cheng et al., 2020; Wu & Levinson, 2021). Thus, 
ensemble modeling provides a mechanism to generalize multiple weak 
learners into a stronger one to minimize variance and improve model 
performance (Mendes-Moreira, Soares, Jorge, & Sousa, 2012; Wu & 
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Levinson, 2021; Wu, Zhang, Jiao, Guo, & Alhaj Hamoud, 2021). 
Depending on data properties and modeling criteria, ensemble models 
can be heterogeneous (i.e., different classifiers/regressors for the base 
models and meta-learner) or homogenous (i.e., the same classifiers/re-
gressors for all models).

Ensemble algorithms are of three types: bagging, boosting, and 
stacking. Both bagging and boosting are examples of homogenous en-
sembles, whereas stacking can accommodate both homo- and hetero-
geneous. A key difference among these variants lies in the data 
subsetting mechanism for the base learners and aggregation algorithm. 
A bagging ensemble (e.g., random forests) uses a subset of datasets with 
replacements to train the base learners and aggregate them through 
majority voting or averaging (Breiman, 2001). A boosting algorithm (e. 
g., adaptive and gradient boosting) initiates the model training with a 
random subset and then continues reweighting the parameters of the 
models in a sequence, with emphasis on misclassified instances 
(Schapire, 1990). In a stacking ensemble, the data is divided into k- 
subsets, and the base models are trained iteratively by fitting them on k- 
1 folds and making predictions on the remaining fold. After training the 
base models, the collected predictions are used to fit the meta-model, 
which aggregates the outputs of the base models to make the final 
prediction (Wolpert, 1992). The stacking generalization is sometimes 
termed a blending ensemble when a hold-out validation dataset is set 
aside instead of using out-of-fold prediction to generate input features 
for the meta-learner (Wu et al., 2021).

Wu and Levinson (2021) outline two major applications of ensemble 
models in transportation research: 1. Combining multiple models to 
overcome the limitations and uncertainties involved in single model 
assumptions and 2. Combining data to generalize information from 
multiple sources. Irrespective of the categories, ensemble models are 
widely applied in past transportation research on mode choice and ride- 
sharing behavior (Chen, Zahiri, & Zhang, 2017; Cheng et al., 2020), trip 
purpose (Ghasri, Hossein Rashidi, & Waller, 2017), mode-specific traffic 
flow (Jin et al., 2020; Li, Yabuki, & Fukuda, 2022), activity-based travel 
demand (Hafezi, Daisy, Millward, & Liu, 2021), driving style (Bejani & 
Ghatee, 2018; Xing, Lv, Wang, Cao, & Velenis, 2020) and crash severity 
(Ji & Levinson, 2020).

3. Data

Our study area is Columbus, Ohio, USA, where we conducted a 
mobility survey to collect individual-level data on daily travel patterns 
and experiences. We obtained the following travel perception data from 
each traveler during the mobility survey.

3.1. Street-specific perception data

We asked participants to rate different Columbus streets based on 
their perceptions of safety, comfort, and willingness to walk within those 
road environments. We used a Likert scale of strongly disagree (1) – 
strongly agree (5), and three statements for rating each street: “I am 
willing to walk on this road”, “I feel safe from crashes when walking on this 
road”, and “The surrounding environment is pleasant.” We use this infor-
mation as soft spatial constraints in this study.

3.2. Travel-time preference

We also asked participants to state their preferred travel time for 
transit rides and walking trips by purpose, assuming that the street de-
signs fulfill their network preferences and safety perceptions. We use 
this information to represent soft temporal constraints.

3.3. Personal information

We also collected data on participants’ socio-economic status (SES) 
(gender, income, and race) to define our social groups.

The main task of the survey was to rate different streets of Columbus, 
which can be tedious. Hence, we designed the survey in three steps to 
account for the high attrition rate during the survey procedure. Once a 
participant entered the online baseline survey, we showed Google Street 
Views (GSV) of 20 representative roads in Columbus and asked them to 
rate each street based on their perceptions of safety, comfort, and 
walking willingness. Participation in the next two steps was voluntary. 
In the second step, the pop-up survey, participants tracked their trips for 
a week using the ArcGIS field maps mobile app, took 40 street photos on 
their route, and rated them using the same indicators. In the end survey, 
participants rated an additional 40 Google Street Views of Columbus 
roads.

We compensated the participants after each survey completion to 
encourage participation in the next step. Participants received 
compensation of $10 and $15 for an approximate time commitment of 
30 and 60 min in the baseline and end surveys. The compensation for 
pop-up surveys was $30 for 80 min of active participation to complete 
the photo surveys and 7 days of inactive mobility tracking through the 
app. Moreover, we excluded participants who completed the baseline 
survey in less than 10 min to ensure reliable and sincere online survey 
responses.

We have 477 participants who completed the baseline survey. Of 
these, 40 completed the pop-up survey, and 237, including the partici-
pants in the pop-up survey, completed the end survey. The rest (240 
travelers) only completed the baseline survey. Despite the compensa-
tion, the survey medium perhaps played a role in the unequal survey 
participation rates. Participation was higher in the baseline and end 
surveys as they were easier to complete online compared to the pop-up 
surveys involving active outdoor engagements.

We collected secondary data sets on the existing road infrastructure 
and the built environment (Table 1). We use these datasets as input for 
modeling and predicting soft constraints.

4. Methods

The first step of designing inclusive access is to measure network- 
specific soft constraints for 12 mutually exclusive social groups. We 
define these social groups based on travelers’ gender (male and female), 
annual income (low: ≤ $45,000, high ≥ $75,000, and moderate: 
$45,000 - $75,000), and race (white and people of color). Table 2 pro-
vides the total number of survey respondents in each social group and 
the number of them completing two or more surveys. We use this 
categorization later for data splitting.

Most previous studies quantify perceptions as an index, averaging 
several subjective factors such as self-perceived ability, ease, 

Table 1 
Additional land use and transportation network data used in this study.

Variable Data type Source

Number of lanes Continuous Mid-Ohio Regional 
Planning Commission 
(MORPC)

Posted speed limit (miles per hour) Continuous
Functional class, excluding 
interstates, freeways, and ramps

Categorical

Road width (meters)
Continuous

Federal Highway 
Administration, USDOT

Average daily traffic volume Continuous StreetLight Data Inc.
Sidewalk availability Binary

Mid-Ohio Regional 
Planning Commission 
(MORPC)

Sidewalk width (meters) Continuous
Buffer zone Binary
ADA Compliance of sidewalks Binary
Concrete surface of sidewalks Binary
Light and dense vegetation within a 
10-m buffer from the street 
centerline, estimated using NDVI 
measures on Landsat 8 data (in square 
meters)

Continuous
United States Geological 
Survey (USGS)
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satisfaction, and willingness to travel and activity participation 
(Lattman et al., 2016, 2018; Van der Vlugt et al., 2019; Van der Vlugt 
et al., 2022). Similarly, we estimate soft constraint as a composite 
walking perception score of a certain street – by averaging the ratings of 
walking willingness, perceptions of safety, and comfort from each 
traveler. Note that the survey dataset only contains traveler-specific 
walking perception scores for a selected set of Columbus streets. We 
apply an ensemble algorithm on the survey dataset to predict walking 
perception scores for the rest of the streets in the network separately for 
each social group. The output of the prediction model is the estimated 
street-specific walking perception score for a social group with values 
ranging from 1 to 5, where a high value indicates that a traveler 
belonging to that social group considers the street highly walkable. The 
input features are road and land use characteristics (variables shown in 
Table 1) and socio-demographic information (age, gender, and race). We 
perform one-hot encoding for the categorical input features to convert 
them into multiple binary variables and min-max scaling of 0–1 for the 
continuous features.

For each street surveyed by a traveler, the information collected can 
be organized as a pair of input feature vector and its associated target 
value. The input feature vector (x1, …, x11, gender, income, race) con-
tains attributes of a street shown to a traveler in the respective survey (x1 
through x11, as shown in Table 1) and the socio-economic characteristics 
of the person (gender, income, and race). The target value is the walking 
perception score given by the traveler. A key characteristic of our survey 
dataset is that each participant rated the same set of 60 streets during the 
baseline and end survey. The input feature vectors are identical for these 
streets with varying output values when they are rated by travelers with 
the same socio-demographic characteristics. For example, the input 
feature vector for a certain street in the baseline survey is the same for 
two travelers who are both women, low-income, and people of color. 
However, the target values (walking perception scores) given by these 
two travelers may differ based on each person’s perception. Given our 
unique data characteristic, traditional prediction algorithms may be 
unable to effectively learn the underlying pattern in the dataset, leading 
to high model complexities, high prediction errors, and potentially poor 
generalization performance on unseen data (Bishop & Nasrabadi, 2006; 
Gudivada, Apon, & Ding, 2017).

Ensemble modeling can overcome the limitation with identical 
feature vectors by modeling and combining the results across data 
subsets collected from multiple sources (Wu & Levinson, 2021), in our 
case, survey responses from multiple travelers. This study adopts an 
ensemble model partly modified from stacking and blending general-
ization. In this process, we first systematically split part of the survey 
data into traveler-specific training data subsets and use the rest as 
validation and test sets to avoid repeating the same road in the input 
datasets. Next, we model traveler-specific walking perception scores and 
then generalize the predictions across social groups using the training, 
validation, and test sets. This data-splitting process, followed by the 
modified ensemble, enables hierarchy in the modeling process and 
supports our research objective of person-to-group level generalization 
of soft constraints (Jin et al., 2020; Wu et al., 2021).

4.1. Data splitting

We split the entire survey data into training, validation, and test sets 

to omit repetition of the same roads in each input dataset. Fig. 1 illus-
trates the data-splitting mechanism adopted in this study. The training 
set contains baseline and end survey data that are completed by the 237 
travelers. We further classify the training set into 237 traveler-specific 
data subsets, where each subset contains responses on 60 streets used 
in the baseline and end survey. As we will discuss later in this section, 
each subset is used to train a base model in the ensemble, which effec-
tively avoids the use of identical streets in the input of the model. The 
validation dataset contains pop-up survey data completed by 40 out of 
the 237 travelers, consisting of 1600 unique roads (40 streets rated by 40 
travelers) chosen and rated by these travelers during the pop-up surveys. 
We use the validation set to aggregate the base models by fitting a meta- 
learner. The output in the training and validation set contains scores 
provided by the travelers on these unique road datasets, and the input 
feature set represents corresponding road and travelers’ characteristics.

The test set contains data from the 240 travelers who only completed 
the baseline survey and did not proceed further. There are 4800 (20 
streets rated by each traveler) data records in this set. We use the test set 
to evaluate the performance of ensemble models in predicting walking 
perception scores for a new traveler. Since each traveler in the test set 
only rated 20 street photos, individual base models on these small-size 
data would be unstable and inaccurate. Nonetheless, their responses 
can serve as a reference to test how well the ensemble model performs in 
predicting walking perception scores for anonymous travelers. There-
fore, test data input and output represent the baseline survey roads, 
socio-economic attributes of 240 travelers, and their walking perception 
scores for those roads.

Given that travelers are unevenly distributed across 12 social groups 
(Table 2), we ensure to have representative participants from all groups 
during the model development process to account for their travel per-
ceptions. However, due to its relatively small size, our test dataset does 
not contain any travelers from the group of high-income men of color. 
Therefore, our model performance scores, estimated as an average for all 
groups, may not entirely reflect the ensemble model’s effectiveness in 
predicting walking perception scores for this group.

4.2. Model specifications

The general procedure (Fig. 2) of our modified ensemble is to: (1) fit 
the base models using the traveler-specific training dataset, (2) make 
predictions from the trained base models using the validation set, (3) fit 
a meta learner considering the base model prediction as input and the 
target values in the validation set as output, and (4) evaluate the per-
formance of the modified ensemble using the test set. We design three 
ensemble models using three different types of regressors, namely 
random forest (RF), support vector regressor (SVR), and neural network 
(NN). We choose these models because of their wide range of applica-
tions in transportation research (Hagenauer & Helbich, 2017; Koushik 
et al., 2020; Ramírez et al., 2021; Zhao et al., 2020). Each ensemble uses 
homogenous base models and the meta-model (e.g., the SVR ensemble 
fits SVR regressors for all base models and meta-model). In each 
ensemble, we independently tune the hyperparameters for base models 
and meta-model - a common hyperparameter tuning approach for 
ensemble models (Shahhosseini, Hu, & Pham, 2022). The hyper-
parameter tuning process uses random search-based 5-fold cross- 
validation and mean squared errors as evaluation criteria for a given 

Table 2 
Total number of survey respondents in each social group and the number of them completing two or more surveys.

High-income Moderate-income Low-income

Total Completed two or more surveys Total Completed two or more surveys Total Completed two or more surveys

White-men 12 5 22 16 56 31
Men of color 2 2 9 7 69 41
White-women 52 13 52 23 96 47
Women of color 6 2 16 10 85 40
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regressor and its corresponding search space, including a range of 
possible hyperparameter values.

The RF, SVR, and NN-based ensemble models are implemented and 
tested separately. In addition to the three ensemble models, we use the 
respective traditional regressors as alternate benchmarks to compare 
performance. For the traditional models, we use training and validation 
datasets for model training and testing set for performance evaluation. 
Finally, we choose the model with the best mean absolute error (MAE) 
and mean squared error (MSE) scores to predict group-specific walking 
perception scores and apply the estimates in measuring inclusive access.

In RF-ensemble, the hyperparameter search space includes the 
number of trees (200− 2000), maximum features (auto, sqrt), maximum 
depth (10− 100), minimum samples split (2− 10), minimum samples leaf 
(1–4), and bootstrap (Breiman, 2001). In the SVR ensemble, the search 
space contains a Radial Basis Function (RBF) kernel and different com-
binations of Gamma (0.001–0.5), C (0.001–0.1), and epsilon hyper-
parameters (0.01–100) (Smola & Schölkopf, 2004). Lastly, in NN- 
ensemble, the neural network is considered a sequential architecture 
containing two hidden layers with dropout regularization between each 
layer. The search space of NN ensemble is designed with different 
combinations of hyperparameters: number of neurons for each hidden 
layer (10− 200), initial weights (uniform, zero, normal distribution), 
activation functions (relu, tanh, sigmoid, linear), dropout rate (0–0.4), 

optimizer (Adam or SGD) (Shahhosseini et al., 2022). The values in the 
parentheses represent ranges used for tuning respective hyper-
parameters. We also use the same search space, hyperparameter tuning 
process, and evaluation criteria for the corresponding traditional RF, 
SVR, and NN models to maintain consistency.

4.3. Design of base models

Our ensemble algorithm fits the base learners to each traveler- 
specific training data subset {T1, T2, …, Tn}, where n (n = 237) is the 
number of travelers contributing to the training data set. In other words, 
there are 237 base learners, and each of them is trained using the data 
from a unique traveler, which consists of 60 streets. Each base learner, 
therefore, models the walking perception scores of the respective trav-
eler, considering the street characteristics and their socio-demographics. 
For each traveler-specific training data subset Ti (1 ≤ i ≤ n), we tune 
hyperparameters and fit base model Ri. As mentioned earlier, these base 
models are homogenous (e.g., all base models are SVRs in the SVR 
ensemble). Additionally, we use the input data from the validation set to 
make predictions Pi from Ri. Here, Pi is a set of walking perception scores 
predicted for the new roads in the validation set using base model Ri. At 
the end of this process, we get a set of traveler-specific base models, {R1, 
R2, …, Rn} and corresponding validation set predictions {P1, P2, …, Pn}.

Fig. 1. Data splitting process for the modified generalization ensemble.

Fig. 2. Workflow of modified generalization ensemble. R1 through Rn represents the base models fitted using traveler-specific training dataset T1 through Tn, where n 
is the number of travelers in the training set. P1 through Pn are the predictions made on the validation set using respective base models.

A. Kar et al.                                                                                                                                                                                                                                      Computers, Environment and Urban Systems 114 (2024) 102202 

6 



4.4. Design of generalized model

The generalization procedure assigns weights to the base models 
based on their performance in predicting the walking perception score of 
the new roads in the validation dataset. This generalization process fits 
the meta-model using the same type of regressor as in the base models, 
the base model predictions on the validation set {P1, P2, …, Pn} as input, 
and the target values from the validation set as output.

4.5. Evaluating model performance

This step evaluates the performance of the ensemble model in pre-
dicting walking perception scores for the new travelers in the test set, 
whose data are not used in the modeling process. In this process, we pass 
input data from test set through each base model Ri (1 ≤ i ≤ n) to get 
predictions of walking perception scores from all base models. Next, we 
use these base model predictions on test set as input for the fitted meta- 
model to make final predictions. Lastly, we estimate MAE and MSE 
between ensemble predictions and actual responses in the test set.

4.6. Classic and inclusive accessibility measures

The ensemble models allow us to compute a walking perception 
score for each socio-economic group for each street in our study area. 
We consider these scores a representation of soft constraints in 
measuring inclusive access. Additionally, we consider a maximum travel 
time budget, sidewalk availability, and public transit schedule hard 
constraints. With these hard and soft constraints, we then calculate 
classic and inclusive access to food stores for each group. Following the 
criteria set by Kar, Carrel, Miller, and Le (2022), we define food stores, 
mainly as large-scale supermarkets, warehouse clubs, and departmental 
stores (e.g., Walmart, Kroger, Target, Costco, and Sam’s Club) that are 
more likely to carry fresh and wide assortment of produces compared to 
other local grocery stores, discount, and convenience stores. We use 30 
min as a fixed travel time budget following past research investigating 
food access using public transit in the United States (Kar et al., 2022; 
Widener, Farber, Neutens, & Horner, 2013).

The classic accessibility measure identifies all space-time locations 
along a transportation network from where any traveler, regardless of 
their social status, can start a trip and reach a nearby opportunity 
location within a specified travel time budget. Particular to this study, 
we delineate classic accessibility as the network space from where any 
traveler is physically capable of reaching the nearest food stores by using 
public transit and walking within the travel time budget of 30 min, and 
starting their trip at 8 AM on a regular weekday (Tuesday).

To further compare between classic and inclusive access measures, 
we design two types of inclusive access: inclusive access with soft spatial 
constraints (inclusive access 1) and inclusive access with soft spatial and 
temporal constraints (inclusive access 2). The first inclusive access 
considers all hard constraints of classic access mentioned above, as well 
as walking perception scores of social groups as soft spatial constraints. 
To do this, we first modify the road network to eliminate the streets with 
low walking perception scores (walking perception score ≤ 3) for the 
respective group. Using this modified road network, inclusive access 1 
for a social group identifies the network space that any traveler from the 
respective group perceives as accessible as well as they can physically 
reach the nearby food locations within the 30-min travel time budget. 
The second inclusive access modifies the first one by considering the 
travel time budget as a soft constraint instead of a hard one. Here, we 
estimate the preferred transit and walking time for each social group by 
applying the majority rule on individual-level travel time preference 
data. Instead of a fixed time, we use this mode-specific travel time 
preference as the travel time budget to delineate inclusive access 2 for a 
social group.

5. Results

Once both classic and group-specific inclusive access measures are 
estimated, we explore how the inclusive accessibility measure varies 
across social groups that cannot otherwise be captured by the existing 
classic accessibility measures. We quantify the differences in classic and 
inclusive access for each social group in two ways. First, we estimate the 
length of the road network covered by the classic and inclusive acces-
sibility and then calculate the proportion of classic access network that 
also falls within the network coverage of inclusive access 1 and 2. Next, 
we also calculate the number of food stores accessible by both inclusive 
measure and their percentages compared to the classic one.

5.1. Model performance

Fig. 3a and b provides the MAE and MSE scores on the test set esti-
mated from the traditional and ensemble models. Overall, the MAE 
scores for all models are below 1, which we consider an acceptable 
threshold for model performance. Since the original Likert scale in the 
survey contains five scores, with a unit difference between each score, 
MAE values less than 1 indicate that, on average, the model predictions 
do not shift more than one scale from the original data. Also, the 
ensemble approach improves model performance for all cases except for 
the neural network. One possible reason for the worst performance of 
neural networks is their inherent need for a substantial amount of data, 
in contrast to our base models developed using small training data 
subsets. We use the SVR ensemble for further analysis of inclusive access 
as it outperforms other traditional and ensemble models in terms of both 
MAE and MSE.

5.2. Differences in soft constraints across groups

The SVR ensemble model estimates walking perception scores as soft 
spatial constraints for all social groups and all Columbus streets except 
highways and freeways. Fig. 4 provides some examples of group-specific 
walking perception scores predicted for high-income white men, 
moderate-income women of color, low-income men of color, and low- 
income women of color. The maps use a red-to-green color scheme to 
represent roads perceived as the least and most walkable. The results 
show substantial variations in people’s perceptions of a walkable envi-
ronment depending on their gender, race, and income. High-income 
white men find most Columbus streets moderate to highly walkable. 
Note the streets where this population group feels indifferent (marked in 
yellow), moderate-income women of color find those streets unfavor-
able for walking trips (marked in oranges). Again, most streets in 
southeast Columbus yield higher barriers to low-income people of color 
regardless of gender (marked in yellow to red). However, like other 
groups, low-income men of color find the southwestern part of Colum-
bus highly walkable (marked in dark green), which is not the case for 
low-income women of color (marked in light green). Interestingly, the 
walking perception maps of the low-income population resemble the 
high-injury networks and pedestrian crash hotspots of Columbus, map-
ped by the Columbus Vision Zero initiative (Vision Zero Columbus, 
2021).

Fig. A1 in the appendix further illustrates the similarities in walking 
perception scores among these four example groups. These groups share 
similar perceptions of walking (marked in orange) for the streets in 
central Columbus, primarily downtown, but different views (marked in 
grey) in the northwest and southeast directions. Despite the difference, 
perceptions of streets in northwest Columbus, especially its outer sub-
urbs, are mostly positive (score 4 or 5), with all groups finding them 
acceptable to varying degrees (Fig. 4). Conversely, perceptions of streets 
in southeast Columbus are mostly negative, especially among low- 
income communities who find the roads unsuitable for walking, while 
high-income communities identify them as somewhat walkable (Fig. 4).

Social differences in daily travel patterns and exposure to specific 
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travel environments may have contributed to such perceptual differ-
ences. Nearly all social groups visit Downtown Columbus for utilitarian 
and recreational purposes, fostering equal exposure, awareness, and 
consensus among groups. In contrast, northwest and southeast Colum-
bus, as high- and low-income areas, respectively, experience infra-
structural disparities, with the southeast being served less. The 
disagreements in perceptions of southeastern streets possibly stem from 
low-income communities being more exposed to these poor conditions 
and thus expressing greater concern.

Using the SVR ensemble, we predict walking perception scores for 
the 12 mutually exclusive social groups. Fig. 5 shows the percentages of 
Columbus streets (in length) perceived as walkable (score 4 or 5) for 
each group in both absolute terms and relative to the walkable travel 
environment of the high-income white men. Overall, the absolute per-
centage ranges between 53 and 62 %, indicating that travelers find 
approximately half of Columbus streets non-walkable. Notably, both 
absolute and relative comparisons suggest that the perception of a 
walkable environment and mobility barriers depend more on travelers’ 
income status than their gender or race. The percentage of walkable 
streets is the highest for high-income white men and gradually decreases 
with the decline of travelers’ income. Men find more streets walkable 
than women in Columbus for all races and incomes, except for low- 
income white populations. Also, low-income and high-income people 
of color find fewer streets favorable for walking compared to their white 
counterparts.

5.3. Classic and inclusive accessibility measure

Fig. 6 provides the classic and inclusive access measured for our 
example social groups. The blue, green, and red colored road networks, 
respectively, indicate people’s classic access, inclusive access 1 with soft 
spatial constraints, and inclusive access 2 with both soft spatial and 
temporal constraints. Note that the classic access for all social groups is 
the same, as it only considers the hard space-time limitations and dis-
regards the effect of travel perceptions. Considering a 30-min travel 
time, availability of transit, and sidewalks, only half of Columbus streets, 
measured by classic access, provide access to the nearest food store. 
Compared to the classic measure, we observe noteworthy differences in 
geographic spaces that feel accessible to these groups, measured by their 
inclusive access. While high-income white men and moderate-income 
women of color residing in affluent neighborhoods of Columbus (e.g., 
central Columbus and the center of north-western suburban cities) can 
access the nearest grocery stores, low-income people living in the less- 
affluent eastern part of Columbus experience minimal access, consid-
ering inclusive access 1. The differences between inclusive access 1 and 
2 are minimal for all groups except for moderate-income women of 
color.

Fig. 7 shows the proportions of classic access network that provides 
inclusive access for all groups. The network coverage drops substantially 

as we shift from classic access to the first inclusive access measure 
considering walking perception scores only. The difference between 
classic and inclusive access 1 is the highest for low-income people of 
color. The coverage of inclusive access 1 for this group is about 1/4th of 
the classic access coverage. Additionally, the coverage of inclusive ac-
cess 1 is smaller for women than men, regardless of their income and 
race. We observe slight declines in accessibility while shifting from in-
clusive access 1 to inclusive access 2 with considerations of soft travel 
time preferences. This decline between inclusive measures 1 and 2 is 
substantial for moderate-income people of color due to their low-travel 
time preference for walking and transit rides.

Fig. 8 depicts the percentages of food store locations accessible by 
inclusive access 1 and 2. Since our measure of classic access is 
destination-focused, it searches for all food store locations accessible by 
public transit and walking. When considering soft constraints, most 
groups can access only about 1/3 of the food stores. This percentage is 
even lower for low-income people of color – only 1/4 of the food stores 
remain accessible. The decline in opportunity locations between inclu-
sive access 1 and 2 is minor except for moderate-income people of color.

6. Discussion

6.1. Major findings and implications

The study introduces an inclusive accessibility concept and measure 
that captures differences in travel behavior for social groups. We design 
a novel data collection approach on individual-level mode-specific 
travel perceptions using GSV and ArcGIS field maps mobile app applied 
to 477 participants in Columbus, OH. We also develop a bottom-up 
approach to systematically include individual-level space-time limita-
tions and travel perceptions in measuring accessibility over a large 
geographic space.

This study demonstrates a unique methodology that computes 
personalized travel perceptions and generalizes them into a group-based 
measure using an SVR ensemble approach. Travel behavior literature 
often discusses the influences of attitude, perceptions, and experiences 
in mode choice and travel decisions (Alfonzo, 2005; Ma & Cao, 2019; 
Singleton & Clifton, 2014). Undoubtedly, these attributes can reflect 
people’s travel patterns and produce a more accurate and realistic 
accessibility measure (Kar et al., 2023). Yet, we do not see much 
application of these attributes in accessibility research as they are highly 
delicate and diversified, often difficult to quantify and integrate. This 
study overcomes that limitation and demonstrates a mechanism to 
model these heterogeneous travel perceptions by homogenous social 
groups with a low data requirement. The multilevel ensemble approach 
of soft constraints modeling enables computing individual- and group- 
level soft constraints. The data splitting mechanism in the ensemble 
allows us to examine how well each traveler-specific base model per-
forms in predicting their walking perception scores in a different travel 

Fig. 3. a) Mean absolute errors (MAE) and b) mean squared errors (MSE) of traditional and ensemble models for predicting perceived walkability scores
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environment, as well as how accurately the generalized model measures 
walking perceptions for new travelers.

The study highlights a major fallacy in our infrastructure design and 
current planning policies. The design of our road infrastructures mainly 
caters to the needs of people with advantages, privileges, and physical 
abilities. Indeed, these infrastructures do not yield equal access to 
everyone due to the diversity in peoples’ travel needs and preferences 
for infrastructure and urban facilities. The study points to quantifiable 
discrepancies and provides evidence of how similar travel environments 
may yield different levels of impedance to people. Our results show that 
(physically able) high-income white men, a representation of the ad-
vantageous population, experience fewer mobility barriers than any 
other community. Meanwhile, economically and racially disparate 

communities recognize many parts of Columbus as problematic, which 
are also the high-injury and crash-prone areas of Columbus (Vision Zero 
Columbus, 2021). Our current planning practices are limited in ac-
commodating these diverse risks and travel needs.

The social differences in safety perceptions, ideal travel environ-
ment, and overall sense of place are perhaps the derivatives of people’s 
daily travel experiences, exposure, and awareness of the existing travel 
environment. Our study finds stark differences in group-specific travel 
perceptions in the southeast parts of Columbus, where residential 
segregation and socio-economic disparities are more pronounced. While 
high-income communities experience limited exposure to road risks 
within their residential neighborhoods, more than 30 % of pedestrian 
fatalities occur in low-income neighborhoods (Smart Growth America, 

Fig. 4. Walking perception score predicted using support vector regressor ensemble for high-income white men (top-left), moderate-income women of color (top- 
right), low-income men of color (bottom-left), and low-income women of color (bottom-right).
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Fig. 5. Percentage of total road length perceived as walkable (score > 3) for all social groups and its relative comparison with high-income white men.

Fig. 6. The classic and inclusive accessibility estimated for the high-income white men (top-left), moderate-income women of color (top-right), low-income men of 
color (bottom-left), and low-income women of color (bottom-right).
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2022), such as those in southeastern Columbus. This greater exposure to 
direct and indirect road violence and traffic trauma makes low-income 
communities more aware and fearful of the flaws in the travel envi-
ronment. Therefore, the perceptual differences across income groups 
stem from low-income communities finding themselves in more 
vulnerable and life-threatening situations, compared to high-income 
communities feeling more secure and comfortable within existing 
walking environments.

Our study is also unique in introducing mode-specific travel time as a 
soft constraint and its variations across communities. The results show 
that moderate-income people are unwilling to take longer transit rides 
and/or walking trips compared to low- and high-income populations. 
We explain these varied travel time preferences as a trade-off between 
how communities value their travel time and how time-poor they are. 
Usually, the value of travel time increases while time poverty decreases 
with income and affordability (Athira, Muneera, Krishnamurthy, & 
Anjaneyulu, 2016; Whillans & West, 2022). Even if we provide 
moderate-income people with their ideal walking environment, they are 
reluctant to switch to alternate travel modes for longer travel since they 
are time-poor and can afford to use cars. However, that’s not the case for 
low- and high-income communities since the former group cannot afford 
to spend more to save travel time, and the latter aren’t time-poor. These 
findings clearly indicate who needs transportation services more, whose 
travel preferences should be prioritized, and where the investments 
should be.

The study overcomes the limitations of person- and place-based 
accessibility measures (Kwan & Weber, 2008; Miller, 2007). The 
classic access measure, a representation of a place-based approach, de-
lineates the same outputs for any population group residing within the 

same geographic space. The inclusive access measure overcomes such 
place-based fallacies by incorporating travel behavior differences across 
communities. The study exemplifies that our built environment and time 
budgets do not only impose physical barriers; they can also create 
perceptual and psychological barriers, impeding travel and activity 
participation. These soft spatial and temporal constraints again vary 
across individuals and social groups residing within the same 
geographic space. The person-based measures, although highly effective 
in capturing the complex relationship between travel perceptions and 
accessibility, can be quite ineffective and impractical for real-life in-
terventions. This person-based to place-based translation thus allows 
inclusive accessibility measures to be applied in network design and 
transportation planning with consideration of the social differences in 
travel choices and accessibility.

6.2. Study limitations and future directions

This study has certain limitations and scope for future advancements. 
The study participants are chosen randomly for the mobility survey, 
leading to an unequal number of sample participants in each social 
group. The sample dataset from the social groups with a higher number 
of travelers may dominate our prediction of walking perceptions. 
Moreover, due to the limited number of sample travelers, we evaluate 
model performance in an aggregated manner that does not account for 
varying prediction accuracy across different socio-economic groups. 
Future research may adopt more systematic and stratified sampling 
approaches to ensure a representative sample of participants from all 
demographics and socio-economic groups of all Columbus neighbor-
hoods. This method will guarantee a proportional distribution of all 

Fig. 7. Proportions of road network accessible by inclusive access measure compared to classic access.

Fig. 8. Percentages of food store locations accessible considering the inclusive access measure.
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social groups within the sample, leading to a more accurate prediction 
and separate group-specific evaluation of model performances. Our 
survey questionnaire is also limited in capturing travel choices and 
perceptions of people with physical and mental disabilities. An exten-
sion of this data collection can be designed, particularly for capturing 
mode-specific travel perceptions for people with mobility disabilities.

Moreover, future studies may advance the survey design to reduce 
self-selection biases and anchoring effects. Our survey dataset may 
contain self-selection biases as those who opted for the mobile app 
survey part may be more attuned to their travel patterns and percep-
tions, which may lead to overestimation in the models. Also, travelers’ 
survey responses may have some anchoring effects, wherein their pre-
conceived preferences and biases toward certain neighborhoods in Co-
lumbus may affect their responses regardless of the actual infrastructure 
present in those areas. To address these limitations, future data collec-
tion efforts may provide additional instructions to the participants to be 
aware of their pre-existing opinions and biases while responding. 
Instead of using real-world street photos, they may also utilize simulated 
street photos or virtual reality that depict different combinations of road 
amenities and the surrounding built environment. By doing so, re-
searchers can minimize anchoring effects in survey responses more 
effectively, as respondents would not be influenced by their prior 
knowledge or associations with specific locations.

Future studies may also enhance the modeling of soft constraints and 
inclusive access in several ways. For instance, the existing estimations of 
walking perception scores assume equal weights for the perception in-
dicators - safety, comfort, and willingness. However, the importance of 
each indicator in shaping walking perceptions may differ across socio- 
economic groups, such as low-income people prioritizing safety over 
comfort. Future research may test different weighting schemes of each 
perception indicator for each social group to yield a more accurate 
walking perception measure.

Similarly, our inclusive accessibility measure treats the walking 
perception score as a binary constraint, assuming people only walk 
when the travel environment seems favorable. In other words, a route is 
excluded from the inclusive accessibility measure if any link on that 
route feels unwalkable to the traveler. To further accommodate people’s 
varying tolerance levels at varying road conditions, future studies may 
consider both time and perception as cost functions when determining 
optimum routes for the accessible network layer. However, incorpo-
rating multiple cost functions introduces model complexities, as alter-
nate routes between locations may have trade-offs between time 
efficiency and perceptual feasibility. To address this, future research 
may need to estimate additional parameters, such as the weights for 
each cost function, to derive a combined cost parameter. Future research 
may extend the survey questionnaire to help generate necessary data. 
Beyond rating each travel environment, participants can provide overall 
ratings for time and perception indicators based on how they prioritize 
and evaluate these factors in their daily travel decisions.

Lastly, the current modeling approach only validates the ensemble 
model performances in predicting soft constraints and lacks any trian-
gulation for inclusive accessibility measures. Future studies may 
conduct another primary data collection, perhaps semi-structured in-
terviews or focus group discussion-based data collection, to evaluate the 
accuracy of inclusive accessibility measures and means to improve it.

Despite the limitations, this study contributes to developing a 
method that effectively measures both spatial and social differences in 
travel perceptions and accessibility. By predicting the group-specific 

walking perception scores using ML-based algorithms, our method sig-
nifies that travelers of different socioeconomic identities have different 
perceptions of mobility barriers within similar travel environments. 
Continuing this analysis, future research can further characterize 
community-specific walkable travel environments by identifying the 
infrastructural and environmental factors influencing their perceptual 
variations.

7. Conclusions

The paper demonstrates a method to operationalize the bottom-up 
inclusive accessibility concept, using a unique mobility survey dataset 
from Columbus, OH, and focusing on public transit and walking. 
Advancing prior research, the group-specific inclusive access integrates 
travel perceptions predicted for socio-economic communities by sys-
tematically aggregating and modeling their individual-level data. By 
accounting for spatial and social variabilities in travel perceptions, in-
clusive access offers a more conservative, reliable, and socially sensitive 
approach than traditional measures.

Inclusive access, due to its ability to capture income, gender, and 
racial disparities in travel and access, may serve as an effective tool for 
equity-oriented planning and need-specific transportation investments. 
The data collection approach and method are replicable for any city in 
the United States. Besides, the method itself can be replicable without 
going through the rigorous data collection procedure and using alternate 
data sources, such as travel survey data. This method can help urban 
planners identify where people currently experience difficulties in terms 
of using alternate travel modes and how we can improve network ac-
counting for the social differences in travel behavior and perceptions.
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Appendix A

Fig. A1. The similarities in walking perception scores across four example groups: high-income white men, moderate-income women of color, low-income men of 
color, and low-income women of color. Each street marked in grey has different walking perception scores for at least two of these social groups, while the streets 
marked in orange have the same walking perception across all communities.
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