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Travelers’ day-to-day mobility depends on their perceptions, experiences, and personal characteristics. Many

accessibility measures overlook perceptual factors and mainly consider space–time limitations of mobility,

overestimating travelers’ potential mobility. We introduce a novel inclusive accessibility concept that

advances time-geographic accessibility measures in light of travel behavior theories. We conceptualize

inclusive accessibility as a subset of the classic space–time prism (STP) that incorporates hard constraints

(e.g., limited infrastructure and services and time) and soft constraints (e.g., perceptions of safety and

comfort toward the built environment and infrastructure and travel time preferences). We collected survey

data on individual-level mobility perceptions and applied machine learning algorithms to predict

personalized soft constraints for walking. Considering public transit and walking, we model and compare

three network-based STPs: classic STP with hard constraints, inclusive STP with soft spatial constraints, and

inclusive STP with soft spatial and temporal constraints. Our method demonstrates heterogeneities in

individuals’ mobility perceptions. We illustrate that the individual’s level of accessibility shrinks substantially

as we approach more conservative measures that include travel perceptions. Our method highlights the

differences between travelers’ physically and psychologically accessible space depending on their travel

choices and exposure. Key Words: active transportation, hard and soft spatial constraints, physically and
psychologically accessible space, public transit, smartphone-based mobility survey.

T
ravel needs, patterns, and experiences within

urban settings vary across people of different

age, gender, income, and life stage. Factors

affecting travel behavior (e.g., attitudes, perceptions,

and personal experiences) bridge the connection

between these varied travel needs and actual travel

(Alfonzo 2005; Singleton and Clifton 2015; Ma and

Cao 2019). Depending on their attitudes and percep-

tions toward the built environment, people could

experience different mobility barriers within the

same travel environment (e.g., availability of infra-

structures and opportunity locations, road surface

conditions, safety, and cleanliness; Ma and Cao

2019). Individuals’ day-to-day travel is a trade-off

between their travel needs and perceptions of mobil-

ity constraints.

Over the years, transportation researchers have

developed models predicting human travel behavior

(Alfonzo 2005; Burbidge and Goulias 2009;

Singleton and Clifton 2015). These theories suggest

that nonautomobile travel behavior is influenced by

not only physical ability, time, and monetary budget

(Alfonzo 2005; Singleton and Clifton 2015), but

also mobility perceptions and experiences with the

built environment (Handy, Cao, and Mokhtarian

2005; G€otschi et al. 2017). Similarly, transit and

active transportation usage is affected by safety per-

ceptions, which vary by age, gender, and personal

experiences (S€onmez and Graefe 1998; Spears,

Houston, and Boarnet 2013; Abenoza et al. 2018).

Addressing these perceptual mobility constraints

through built environment changes, such as rede-

signing road infrastructure and restructuring land-use

patterns, could influence individual attitudes toward

active and transit travel and reduce car usage

(Taylor et al. 2009; Tracy et al. 2011; Zhang et al.

2012; Schoner, Cao, and Levinson 2015; Aziz et al.

2018; De Vos, Ettema, and Witlox 2018; Rahman

and Sciara 2022). Despite its significance, few stud-

ies demonstrate the applications of individual-level

behavioral aspects in designing multimodal transpor-

tation systems, including transit, biking, and walk-

ing. One of the reasons for this limitation is the
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tedious nature of capturing the intricate details of

human travel behavior and its underlying

heterogeneity.

Person-based accessibility measures account for

the spatiotemporal complexities involved in human

mobility (Miller 2017); thus, it offers an effective

framework to incorporate heterogeneous travel per-

ceptions in accessibility. Person-based accessibility

measures quantify a person’s ability to reach essential

services and opportunity locations (e.g., jobs, health

care, and green space) from key locations (e.g.,

home, work, or a neighborhood), based on schedul-

ing constraints imposed by required activities that

are fixed in space and time (Levinson and Wu

2020). Such measures typically adopt the concepts

of time geography, including the ability to trade

time for space in movement (Hagerstrand 1970; Kim

and Kwan 2003). In other words, time geography

assumes that people get longer activity participation

time at a location if they travel shorter and vice

versa. Person-based accessibility uses this time-geo-

graphic concept of space–time budgeting to identify

a person’s potential course of action. Past studies

have developed extensions of person-based space–

time accessibility measures to capture constraints

such as network and non-network barriers and costs

(Neutens et al. 2008; Miller and Bridwell 2009; Lee

and Miller 2019).
Although powerful, the classic person-based acces-

sibility measures are physicalist in nature (Thrift

1977) and limited in capturing diverse travel percep-

tions and their influences on actual travel (van der

Vlugt, Curl, and Wittowsky 2019; J. Ryan and

Pereira 2021). Due to this neglect of the implicit

barriers or frictions experienced by people with dif-

ferent socioeconomic backgrounds, these measures

can overestimate accessibility by preventing the

physical accessibility limits expressed by space–time

measures from being fully realized. For example, pre-

vious research indicates clear gender and age differ-

ences in perceived safety and comfort levels in

walking and biking through different built environ-

ments and street designs (Yavuz and Welch 2010;

Delbosc and Currie 2012; Le et al. 2019). This can

introduce biases in accessibility measures for some

social groups and travel episodes that are overlooked

by classic space–time measures (Kwan 1999).
This study introduces concepts and measures of

inclusive accessibility to address the limitations of

classic access. Inclusive accessibility reflects

heterogeneous travel perceptions that can vary across

individuals and social groups. Inclusive access is an

attenuated version of classic access that considers

both physical and perceptual travel constraints.

Where classic accessibility estimates potential mobil-

ity based on physical space–time limits only, inclu-

sive accessibility also incorporates perceptions that

can attenuate physical accessibility. The shift from

classic to inclusive measures allows planners and pol-

icymakers to understand equity and fairness in locat-

ing transportation infrastructure and essential

services that are likely to vary across different popu-

lation groups with diverse financial and physical

abilities, risk perceptions, and acceptance.

The inclusive accessibility concept categorizes

accessibility constraints into hard and soft con-

straints. Hard constraints capture the physical space–

time limitations toward travel (e.g., travel time bud-

get, location of fixed activities, and activity dura-

tion), whereas soft constraints are personal

perceptions toward the land-use–transportation envi-

ronment and time. We develop a person-based inclu-

sive accessibility measure that accounts for hard and

soft constraints using time-geography concepts and

machine learning (ML) techniques. The objectives

of this article are first, to formulate an individual-

level inclusive accessibility measure integrating both

hard and soft constraints, and second, to exemplify

the variations in inclusive accessibility across travel-

ers using case studies from a mobility survey. This

study focuses on measuring inclusive accessibility

considering public transit and walking only,

although it applies to other travel modes.

The article makes several contributions. It is the

first to develop a person-based accessibility measure

that incorporates the perceptions and attitudinal fac-

tors as soft constraints, therefore making the prior

physicalist measures more realistic. In addition, we

curate a novel data collection approach for capturing

individual-level mobility perceptions and use ML

algorithms to quantify individual-level soft con-

straints from the data set. Policymakers and practi-

tioners can adopt similar data collection approaches

on a larger scale for the real-life implementation of

this study.
The rest of the article is structured as follows.

The “Background” section summarizes the past liter-

ature on travel behavior and accessibility to high-

light the research gap and the importance of this

study. We then discuss the conceptual framework of
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inclusive accessibility. The “Data” and “Method”

sections describe, respectively, data requirements and

model criteria. We then present findings from case

studies demonstrating the application of the inclu-

sive accessibility concept in measuring person-based

accessibility. In the “Discussion” section, we assess

the merits, limitations, and future potentials of our

concept, and we conclude the article by outlining

future research directions.

Background

In this section, we summarize travel behavior

research demonstrating the influences of spatiotempo-

ral, built-environment, and socioeconomic factors on

human travel behavior and its variations across social

groups. Next, we discuss the criteria and methods

used in the past person-based accessibility measures.

Finally, we overview the current studies that under-

score the differences between accessibility measures

with and without considering mobility perceptions.

Social Differences in Travel Behavior and Mode
Choices

Travel behavior research underscores the influen-

ces of personal behavior (e.g., choice, perception,

habit, attitude) and sociodemographics in character-

izing human travel and activities (Burbidge and

Goulias 2009; Van Acker, Van Wee, and Witlox

2010; Goulias 2018). In particular, this research sug-

gests that personal preferences toward the built envi-

ronment (e.g., network and land use) play an

essential role in travelers’ travel decisions and

choices for active transportation (Singleton and

Clifton 2015; G€otschi et al. 2017). For instance,

people generally prefer walking or biking on com-

plete and connected pedestrian–bike infrastructures

(Howard and Burns 2001; Khatri et al. 2016). In

contrast, other street characteristics, including

mixed-traffic lanes, higher speed, heavy traffic vol-

ume, a higher number of intersections and traffic sig-

nals, and on-street parking, are the primary reasons

behind the current lack of interest in active travel

among people (Sener, Eluru, and Bhat 2009; Khatri

et al. 2016; Le et al. 2019).
Safety perception developed through personal

sense of places and past travel experiences is another

major determinant of travelers’ mode choice deci-

sions. Travelers prefer to walk and bike more in their

familiar neighborhoods and routes, considering them

safe, walkable, or bike-friendly regardless of their net-

work type and road characteristics (Howard and

Burns 2001; Voorhees et al. 2010). Also, experienced

and frequent transit and bike riders are often less con-

cerned about these safety issues than others (Sener,

Eluru, and Bhat 2009; Delbosc and Currie 2012).
Additionally, people’s willingness and time prefer-

ences for multimodal travel vary by their trip purposes

and overall travel attitudes. As opposed to car travel,

transit, biking, and walking are less preferred for work

travel as individuals often perceive these modes as

time-consuming, stressful, and unsafe (Heinen and

Bohte 2014; Li, Huang, and Axhausen 2020;

McKenzie 2014; Young, Allen, and Farber 2020). In

fact, low-income populations often choose car travel

over other inexpensive travel options to save travel

time and increase activity participation opportunities

(Ettema et al. 2010; Blumenberg 2017).

Finally, travelers tend to make trade-offs between

these perceptual factors in their daily mode choice

decisions, depending on their age, gender, income

levels, life stage, and personal experiences (Alfonzo

2005; Singleton and Clifton 2015; Ma and Cao

2019). For instance, women, children, and older

adults are generally more concerned about personal

well-being and security related to crime and other

harassment during public transit rides or active

travel at certain times of the day, such as evening or

night hours (Yavuz and Welch 2010; Delbosc and

Currie 2012; Le et al. 2019). Choices to ride transit

also differ within social groups based on their resi-

dential locations in urban and suburban areas and

the availability of transit services (Mercado et al.

2012; Paez et al. 2010). Likewise, older adults,

despite being the group most interested in walking,

consider themselves more vulnerable than others due

to the lack of proper pedestrian facilities and higher

risks of crashes and injuries (Lachapelle and Cloutier

2017; Arranz-L�opez et al. 2019). This study aims to

capture these diverse mobility perceptions and their

influences on travelers’ potential mobility across

individuals and social groups.

Space–Time Accessibility Measures

Accessibility refers to the ability to reach activi-

ties and opportunities (Levinson and Wu 2020).

Accessibility measures are broadly classified into

two categories: place-based (or location-based) and
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person-based (or individual-based; Geurs and Van

Wee 2004). Place-based measures quantify the

proximity of facilities from the origin based on dis-

tance or travel time (Levinson and Wu 2020).

Place-based measures are typically static and gener-

alized concepts and cannot address the dynamic

and individualistic nature of human travel behavior

and traffic conditions (Miller 2005). In contrast,

the person-based accessibility measure highlights

the time-varying nature of human travel and activ-

ity across space. Specifically, these measures repre-

sent the opportunities or services accessible by

individuals from their origin, considering their per-

sonal activity pattern and their scheduling and

coordination with the built environment (e.g., land

use and transportation; Kwan 1998). In addition,

person-based accessibility measures can accommo-

date an individual’s physical, social, and economic

constraints to travel. This method is appreciated for

its microlevel analytical approach to studying intri-

cate human travel behavior patterns.
Time geography theory conceptualizes time and

space as limited resources and analyzes the space–

time allocations of humans to determine their poten-

tial course of action within their surrounding physi-

cal environment (Hagerstrand 1970; Thrift 1977).

The most common quantification approaches to per-

son-based accessibility are time-geography-based

space–time prism (STP) and potential path area

(PPA). STP is a three-dimensional construct repre-

senting accessibility in geographic space with respect

to time, constrained by anchors such as a fixed ori-

gin, fixed destination, or a fixed origin–destination

pair. Based on these anchor locations and times, a

person can participate in activities subject to his or

her time budget and other constraints, including the

speed limits afforded by different transportation

modes (Kim and Kwan 2003; Miller 2005; Neutens

et al. 2008). STP contains two parts: forward cones

and backward cones. The forward cones identify all

space–time locations reachable from the origin

within a travel time budget. Conversely, the back-

ward cone captures all space–time locations from

where an individual could arrive at the destination

within the same travel time budget (Delafontaine,

Neutens, and Van de Weghe 2011). Finally, the

STP measure is a subset of the space–time points in

the forward and backward cone where a traveler can

start from the origin, reach a flexible activity

location, and stay at least for the minimum activity

participation time, then arrive at the destination

within a time budget.
The PPA is the projection of STP to geographic

space. A PPA contains all locations that can be

reached between two fixed activity locations and

times using a fixed travel time budget and other

costs (Kim and Kwan 2003; Miller 2017). Figure 1

illustrates PPA derived from a general STP. The

gray area on the horizontal x-axis presents the PPA

between point locations xi and xj, considering the

travel time window tij and minimum activity partici-

pation time aij (Miller 2005).
Recent decades have seen many extensions and

elaborations of the classic STPs. These studies

mainly focus on a better representation of the physi-

cal travel environment, strategies for dealing with

nonuniform time-varying network properties (e.g.,

travel velocity, traffic volume, and congestion), and

consequent travel uncertainties. For instance, the

network time prism captures variable travel speeds

along static or dynamic transportation networks

(Miller 2008; Neutens et al. 2008). Other network-

based STP measures, such as robust prism and reli-

able STP, are stochastic and quantify uncertainties

and travel delays (Chen et al. 2013; Song and Miller

2014; Song et al. 2016; Lee and Miller 2020). These

network-based STP measures are often presented as

a two-dimensional potential network area (PNA),

illustrating the network space accessible to a person

based on his or her activity locations, time budget,

and other network properties (Miller 2008).

Figure 1. Space–time prism and associated potential path area.

Based on Miller (2005).
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Other non-network elements of the built and nat-

ural environment (e.g., elevation, water bodies,

buildings, and restricted areas) often cause similar

impedance to movement in accessibility, captured in

some STP extensions, namely field-based prism and

rough prism (Miller and Bridwell 2009;

Delafontaine, Neutens, and Van de Weghe 2011;

Liu, Yan, and Chow 2015). As indicated, these past

STP measures are mainly physicalist and only con-

sider the spatiotemporal limitations of human travel

and activity participation. In most cases, existing

accessibility measures overlook perceived constraints

that might affect people’s potential to reach their

destinations.

Perception-Based Accessibility Measures

Past literature contains very few studies that

acknowledge the limitations of physicalist space–

time accessibility measures. Most studies follow a

qualitative geographic information systems (GIS)-

based mixed-method approach initiated by feminist

geographers to embed gendered experiences and

social and behavioral theories within the positivist

and empiricist framework of GIS (Kwan and Knigge

2006; Cope and Elwood 2009). Some pioneering

work includes STP measures by Kwan and Hong

(1998), where they overlaid individuals’ PPAs with

the opportunities located in their preferred or famil-

iar areas, rated by the participants on a gridded map.

In another study, Kwan (1999) underscored the

underlying gender biases in STP measures as women

participate more in multipurpose travel in their daily

life, adding higher levels of space–time constraints

in terms of their access to urban opportunities.

Other similar studies also analyze qualitative infor-

mation (e.g., narratives and sketch maps from inter-

views and focus group discussions) using geospatial

tools to explain the impacts of gendered and life

experiences of individuals on daily mobility and

accessibility (Kwan and Ding 2008; Boschmann

2011; Mennis, Mason, and Cao 2013; Tiznado-

Aitken et al. 2020). Although effective, the data

collection approaches adopted in these studies are

quite time-consuming and do not support the quan-

titative analysis required to integrate travel percep-

tions into classic STP measures.
A few recent studies have coined the term per-

ceived accessibility, which refers to the apparent ease

of reaching opportunity locations using the available

urban transportation system (Cheng and Chen 2015;

L€attman, Olsson, and Friman 2016, 2018; Ryan

et al. 2016; van der Vlugt, Curl, and Wittowsky

2019; Pot, van Wee, and Tillema 2021). These stud-

ies categorize accessibility constraints into two parts:

objective and subjective measures. The objective

measures are the space–time limitations considered

in the past accessibility literature. On the other

hand, the subjective measures are the perception-

based factors that contribute to an individual’s travel

decisions and mode choices, such as mode preferen-

ces by activity type (L€attman, Olsson, and Friman

2016, 2018; Ma and Cao 2019), perceived ability to

reach activities using transit and walking (Cheng

and Chen 2015; Ryan et al. 2016; J. Ryan and

Pereira 2021), and overall perception of time and

built environment as an outcome of human cogni-

tive processes (Ma and Cao 2019; Pot, van Wee,

and Tillema 2021). Regardless of the diverse consid-

erations of subjective measures, these studies under-

score that accessibility using objective measures

causes overestimation compared to perceived accessi-

bility (Gebel et al. 2011; L€attman, Olsson, and

Friman 2016, 2018; Ma and Cao 2019; J. Ryan and

Pereira 2021). These studies also point out the dif-

ferences in accessibility by age, gender, lifestyle, and

residential locations (Cheng and Chen 2015;

Tiznado-Aitken et al. 2020). Most of the past

research on perceived access is measured at an aggre-

gate level that might be ineffective in preserving the

distinctive nature of travel perceptions.

Conceptual Framework

Inclusive accessibility is an STP measure consider-

ing a person’s physical and perceptual ability to reach

activity locations. The inclusive STP is a modifica-

tion of classic STP that contextualizes an individual’s

space–time limitations of travel along with his or her

perceived mobility barriers. To accomplish these

properties, the inclusive STP categorizes accessibility

constraints into hard and soft constraints. Figure 2

provides a general framework of the inclusive accessi-

bility approach used in this study.

Hard and Soft Constraints

Hard constraints refer to the physical and objec-

tive constraints that a traveler must fulfill to travel

and participate in activities. These constraints are

Inclusive Accessibility 5



typically explicit, easily quantifiable, out of an indi-

vidual’s control, and universally applied to every-

one. Noncompliance with these constraints could

restrict an individual from traveling. These con-

straints are predominantly spatiotemporal, such as

distanced activity locations, limited travel time

budget, and limited operation hours of transit and

business activities. Personal limitations such as

physical disability, limited income, and a fixed bud-

get for travel expenses can also be hard constraints

as they sometimes limit people from traveling.
Soft constraints represent the perceptual and sub-

jective factors that individuals negotiate to make a

trip viable to them. Compared to hard constraints,

soft constraints are implicit and more personally

varied, such as travelers’ overall attitude, risk per-

ceptions, and acceptance. Note that soft constraints

might reflect travelers’ spatial and temporal percep-

tions. Soft spatial constraints include travelers’ per-

ceptions and acceptance of safety and comfort for

certain travel modes and activities given the

surrounding environments (e.g., land use and

transportation). The soft spatial constraints are

context-dependent and can be measured in any

geographic units: along transportation networks, at

activity locations, and within neighborhoods.
Classic STP considers travel time budget a hard

constraint and estimates it as available time for flexi-

ble activities given a traveler’s scheduling of required

activities. Available time might be longer than a per-

son’s preferred time to travel by each travel mode and

to any destination. Inclusive accessibility treats time

as a hard constraint when estimated conventionally

and a soft constraint when derived as time preference.

Similarly, other hard and soft constraints might not

be mutually exclusive and vary from person to person.

For instance, personal constraint, such as mobility

disabilities, is a soft constraint for a person who can

still travel at a slower pace but only to certain areas

with wheelchair access. Similarly, safety, both traffic

and crime related, might not always be perceptual.

People might strictly avoid some crime-prone areas;

in this case, it can be a hard constraint.
Measuring accessibility requires extensive data on

hard and soft constraints. Data on hard constraints

(e.g., transportation infrastructure, mobility services,

Figure 2. Framework for measuring person-based inclusive accessibility. Note: STP¼ space–time prism.
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and activity locations) are easily available from sec-

ondary data sources. Data on soft spatial constraints,

however, are limited, require time-consuming pri-

mary data collection, and do not guarantee extensive

data coverage, which is problematic for incorporat-

ing soft constraints into accessibility measures.

ML prediction algorithms can help overcome this

limitation (Figure 2). First, we can aggregate multi-

ple soft constraints into a composite soft impedance

score. Next, we train an ML algorithm that uses the

soft impedance score from primary data as output.

The input of this ML model can be any potential

determinants of soft impedance score (e.g., charac-

teristics of land use and transportation infrastructure,

built and natural environment, and personal attrib-

utes). Finally, we predict the soft impedance score of

the entire study area using the trained model. The

most appropriate choice to construct inclusive STP

is to collect data on hard and soft constraints along

transportation networks, given that three core ele-

ments of an STP construct are anchors, a transporta-

tion network, and a velocity to traverse along the

network (Miller 2017). We can collect sample data

and predict soft impedance using ML at any geo-

graphic unit (e.g., streets, activity locations, neigh-

borhoods), though, and embed them within the

transportation network through spatial operations.

Inclusive Space–Time Prism

Inclusive STP is conceptualized as a subset of the

classic STP that (1) is physically realizable (hard

constraints), and (2) meets a minimum threshold

with respect to individual perceptions and accep-

tance of safety and comfort. We develop two types

of inclusive STPs: The first considers soft spatial

constraints only, and the other considers both soft

spatial and temporal constraints.

The inclusive STP with soft spatial constraints

identifies the geographic coverage that is physically

and psychologically accessible to a person from the

activity location, considering their soft spatial con-

straints and other hard constraints specified in the

classic STP. Inclusive STP with soft spatial and tem-

poral constraints further considers time preferences

with other hard and soft constraints. Thus, each

STP construct is a subset of the previous one as they

account for more individual-level travel perceptions

and are more representative of the day-to-day travel

that one might undertake using multiple modes.

Data

Primary Data

We collected primary data on individuals’ daily

travel patterns and experiences through a mobility

survey. We focus on Columbus, Ohio, neighbor-

hoods with higher percentages of public and active

transportation usage both by choice and necessity.

We recruited participants via advertisements on

social media sites such as Facebook and Nextdoor,

neighborhood commission meetings, and local social

events.
Our mobility survey includes three steps: baseline,

smartphone-based pop-up survey, and end survey.

The baseline and end survey have questions on day-

to-day travel patterns, preferences toward traveling by

specific modes (transit and walking), and demo-

graphics. In addition, we display example photos of

Columbus roads (captured from Google Street View)

to learn about travelers’ perceptions of safety, com-

fort, and willingness to use multiple modes within

those road environments. We chose the sample roads

in the baseline and end survey that represent the

diverse travel environment of Columbus and allow us

to maximize the intrapersonal variability in soft spa-

tial constraints. The pop-up survey involves using the

ArcGIS Field maps mobile app to complete surveys

and a travel log over a week. During this survey, trav-

elers took photos of some road segments on their

routes and filled out similar information on safety,

comfort, and willingness to use specific modes.
We have 100 street photos rated by each traveler

who completed all survey steps. We use the follow-

ing statements to rate each street photo using a

Likert scale ranging from 1 (strongly disagree) to 5

(strongly agree).

1. I am willing to walk on this road.

2. I feel safe from crashes when walking on this road.

3. The surrounding environment is pleasant.

This article analyzes results from forty travelers with

complete survey data sets of 100 data points and trip

data to demonstrate and illustrate our method.

Secondary Data

We collected secondary data on the existing road

infrastructure and the built environment. Table 1

provides the data descriptions and their respective

sources.
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Method

This study demonstrates inclusive accessibility

using network-based soft constraints that evaluate

an individual’s travel perceptions along Columbus

streets and time preferences for walking and transit

use. We only consider the forward cones of net-

work-based STP that identify parts of transportation

networks reachable from a specific origin consider-

ing a traveler’s hard and soft constraints. We pre-

sent these classic and inclusive STP constructs as

two-dimensional PNA measures for effective inter-

pretation. Figure 3 provides a schematic diagram of

measuring classic and inclusive access used in this

study.

Modeling Hard Constraints

This study considers three indicators to denote

hard constraints: a fixed activity location, a fixed

travel time budget, and public transit routes and

schedules. We find travelers’ fixed activity locations

Table 1. Data description of road, sidewalk, and built environment attributes collected from secondary sources

Variable Data type Description Source

Network characteristics

Number of lanes Continuous Number of lanes available on each

street, varies from 1–4

Mid-Ohio Open Data

(MORPC 2021)

Speed Continuous Speed limit, between 15 and 70mph

Functional class Categorical Used principal arterial, minor

arterial, major collector, minor

collector, and local roads and

excluded interstates, freeways, and

ramps from our analysis

Road width Continuous Road width estimates based on the

number of lanes multiplied by the

standard lane width for each

functional class, specified by the

Federal Highway Administration,

U.S. Department of

Transportation

Average daily traffic volume Continuous The average daily traffic volume on

each road segment during 2021

StreetLight Data (2021)

Sidewalk characteristics

Sidewalk availability Binary 1 if a sidewalk is available on the

left, right, or both sides;

otherwise 0

Mid-Ohio Open Data

(MORPC 2021)

Sidewalk width Continuous Width of the available sidewalks,

values range from 3–8 feet.

Buffer zone Binary 1 if any of these buffer types (barrier,

brick, other, planters, tree, lawn)

are available; otherwise 0

ADA compliance of

sidewalks

Binary 1 if the sidewalk is ADA compliant,

otherwise 0

Surface type of sidewalks Binary 1 if the sidewalk surface is concrete-

made, otherwise 0

Land-use characteristics

Light and dense vegetation

within a 10-m buffer from

the street centerline

Continuous NDVI measured using Landsat 8

data (30m resolution) on 30

September 2021

NDVI value 0.3–0.4 is considered

light vegetation and >0.4 is dense

vegetation

U.S. Geological

Survey (2021)

Note: ADA¼Americans with Disabilities Act; NDVI¼normalized difference vegetation index.
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from their trip data. For each traveler, we identify

the origin and destination of each trip during the
seven-day pop-up survey period. Then, we apply the
density-based spatial clustering (DBSCAN)

algorithm to locate the most visited areas of the

travelers (Sander et al. 1998; Campello, Moulavi,
and Sander 2013). We use a minimum of five points
in a cluster and a threshold distance of 400 m.

Figure 3. Schematic diagram of measuring classic and inclusive access used in this study. Note: PNA¼ potential network area.

Inclusive Accessibility 9



We assume that the top cluster with the highest

number of points contains the traveler’s home loca-

tion and use the centroid of that cluster as the fixed

activity location of the respective traveler. We also

collect transit route availability and schedules from

static General Transit Feed Specification (GTFS)

data of 6 December 2021 (GTFS 2020).

Modeling Soft Constraints

The middle block in Figure 3 explains the process

of modeling soft spatial constraints. In this study,

the ratings collected through the street surveys

regarding willingness to walk, safety perception, and

comfort in traveling within different road environ-

ments are considered soft spatial constraints. To sim-

plify our method and calculation, we develop a

walking impedance score as a composite indicator of

the soft spatial constraints. The walking impedance

score represents the mean of walking willingness,

safety, and comfort within the surrounding environ-

ment for each traveler. The variables used to derive

walking impedance scores do not require normaliza-

tion, as they are all on the same 1-to-5 scale.
Because each traveler rates only a sample of

Columbus streets (n¼ 100), we use their individual

survey responses as a training data set and apply ML

algorithms to predict the walking impedance scores

for the rest of the Columbus network. The output

variable for the prediction models is the walking

impedance score of each Columbus street, with val-

ues ranging from 1 to 5, where 1 represents the

highest impedance, and 5 represents the least imped-

ance. We use all variables listed in Table 1 as input

data for predicting walking impedance scores.
We prepare training data sets for each individual

by performing one-hot encoding for categorical vari-

ables and min-max scaling for continuous variables.

Next, we perform cross-validation using repeated k-
fold (sevenfold, three repeats) to evaluate model

choices. We compare stochastic gradient descent,

random forest (RF), multilayer perceptron, and sup-

port vector regressor (SVR) and use mean absolute

error (MAE) in assessing model performances.

Finally, we apply SVR with radial basis function

(RBF) kernel and RF for modeling individual-level

network-based impedance scores.

Based on our selected model, we use 80 percent of

our data set for hyperparameter tuning and model

training, the rest for validation, and finally, we

predict walking impedance scores for the entire

street network of Columbus for each traveler. Using

randomized search cross-validation, the model opti-

mizes gamma, C, and epsilon parameters for the

SVR models and the number of trees, maximum fea-

tures, maximum depth, minimum samples split, min-

imum samples leaf, and bootstrap parameters for the

RF models (Smola and Sch€olkopf 2004; Probst,

Wright, and Boulesteix 2019). Once tuned, we esti-

mate network-based walking impedance scores sepa-

rately for each traveler.
In addition to the walking impedance score as a

soft spatial constraint, we apply travelers’ preferred

travel times for public transit use and walking as soft

temporal constraints. These variables indicate travel-

ers’ attitudes toward using specific modes regardless

of the characteristics of the surrounding travel

environment.

Classic PNA Based on Hard Constraints

The assumption for measuring classic PNA is that

travelers start their trip at 8.00 a.m. on a regular

weekday from an activity location, presumably their

home location. We use the sidewalk availability and

public transit route and schedule to model the road

network with hard constraints. Then we apply a

fixed travel time budget of sixtyminutes to delineate

the road networks that are physically accessible to

this person from the activity location (leftmost col-

umn in Figure 3). We perform this analysis sepa-

rately for each traveler in our study using an ArcGIS

Network Analyst with Python script.

Inclusive PNA with Soft Spatial Constraints
(IPNA 1)

The inclusive PNA follows the same procedure

stated in the previous section, with additional con-

sideration of walking impedance scores to represent

the soft spatial constraints. We convert the classic

measure to the inclusive accessibility approach by

modifying the network and excluding the streets

with a walking impedance score less than or equal to

3 (disagree to neutral). This modified network repre-

sents a walking-friendly travel environment based on

the traveler’s perceptions. Using this modified road

network, we identify parts of road networks that are

not only physically accessible but also feel accessible
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to this person from the fixed activity location using

a fixed travel time budget of sixtyminutes and public

transit schedules (middle column in Figure 3).

Inclusive PNA with Soft Spatial and Temporal
Constraints (IPNA 2)

In this step, we modify our inclusive PNA model-

ing criteria and use the travelers’ transit and walking

time preferences instead of a fixed travel time budget

(the right-most column in Figure 3). This inclusive

PNA model also uses the modified network that

eliminates streets with higher walking impedances.

The inclusive PNA developed in this step outlines

the road network that is physically and psychologi-

cally accessible to this person and fulfills his or her

mode-specific travel time preferences.

Estimating the Differences in Classic and Inclusive
Accessibility

We estimate the differences in accessibility for

each traveler based on the three PNA measures: a

classic PNA with hard constraints, an inclusive

PNA with soft spatial constraints (IPNA 1), and an

inclusive PNA with soft spatial and temporal con-

straints (IPNA 2). First, we calculate the area acces-

sible by each person using a 50-m buffer along their

identified network of PNAs. Then, we calculate the

percentage changes in accessible areas for both

inclusive PNAs using the accessible area by the clas-

sic PNA as a reference. We also replicate this analy-

sis using buffer distances of 75m and 100m to

examine its sensitivity to buffer distances.

Case Studies

Soft Constraints Model Performance and Selection

Table 2 summarizes the average MAEs estimated

by performing cross-validations using four ML algo-

rithms for each user. Overall, the average MAE

values of the user-specific cross-validated SVR and

RF models are the lowest, indicating their better per-

formances than the other two models.

Prediction of Network-Based Walking Impedance
Scores as Soft Constraints

Considering similar model performances, we pre-

dict each user’s walking impedance scores for the

entire network using their individual SVR and RF

models. In the individual-level RF models, the MAE

values in the train data set range from 0.04 to 0.70

with a mean and standard deviation of 0.36 and

0.17, respectively, whereas the MAE values in the

test data set range from 0.41 to 1.13 with a mean

and standard deviation of 0.71 and 0.18, respec-

tively. In the individual-level SVR models, the

MAE values in the train data set range from 0.14 to

0.94 with a mean and standard deviation of 0.46

and 0.18, respectively, and the MAE values in the

test data set range from 0.37 to 1.29 with a mean

and standard deviation of 0.75 and 0.26, respec-

tively. The tuned hyperparameters and MAE of each

traveler’s model are provided in Appendix Table

A.1 and Table A.2.

Figure 4A illustrates the user-specific distribution

of walking impedance scores predicted from SVR.

The boxplots present the travelers’ impedance

score distributions in descending order of their

mean and standard deviation estimated from the

SVR predictions. Figure A.1 in the Appendix pro-

vides the corresponding distributions estimated

from RF models. Whereas the travelers’ mean

walking impedance scores are quite similar between

SVR and RF, the interquartile ranges of the SVR

model predictions are comparatively higher than

the RF for most travelers. Especially for a few

travelers, the RF model predictions are significantly

concentrated around their mean, which is not the

case for the SVR predictions of the same travelers.

Also, the RF model predictions contain more out-

liers than SVR. These findings suggest that the

Table 2. Average mean absolute errors estimated from user-specific cross-validations for model performance evaluation

Stochastic gradient descent Support vector regressor Random forest regressor Multilayer perceptron regressor

Mean 0.73 0.71 0.71 0.74

Standard deviation 0.15 0.17 0.17 0.15

Maximum 1.12 1.19 1.08 1.13

Minimum 0.44 0.40 0.41 0.46
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SVR models might be more consistent and capture

a higher level of variance in the data set.

Therefore, we choose the SVR model to predict

impedance scores for the entire road network and

develop inclusive accessibility.
We observe significant differences in walking

impedance scores among travelers indicating their

varying levels of sensitivity to street characteristics.

As we move from the left to the right side of the

graph (Figure 4A), travelers become more sensitive

to infrastructure and land-use conditions as their

mean walking impedance score decreases. Nine

travelers from the left are least sensitive, as their

mean walking impedance scores are above 4 with

comparatively smaller interquartile ranges, reflect-

ing their preference to walk on most Columbus

streets. Meanwhile, the mean walking impedance

scores are below 3 for the six travelers from the

right, indicating their reluctance toward walking.

These travelers are perhaps highly sensitive and

anticipate higher mobility constraints or unpleasant

travel experiences in most parts of Columbus. The

mean walking impedance scores of the rest of the

travelers fall within—between 3 and 4. These trav-

elers show wide variations in their perceived

barriers during walking trips representing their

moderate levels of sensitivity toward different

travel environments.

Figure 4B illustrates the current walking pattern

of these travelers for work, nonwork, and recrea-

tional trips, following the same order of travelers

illustrated in Figure 4A. For each traveler, a dot in

Figure 4B indicates that he or she frequently takes

walking trips for daily work commutes (e.g., full- or

part-time jobs and schools), or weekly nonwork

essential trips (e.g., groceries and health care) and

recreational trips (e.g., park, green space, and other

entertainment destinations). Apparently, the least

sensitive travelers do not walk much except for rec-

reational trips. The highly sensitive travelers mostly

walk for nonwork and recreational purposes.

Meanwhile, the moderately sensitive travelers who

exhibit varied walking preferences based on street

characteristics are the experienced pedestrians. They

frequently walk for both commuting and noncom-

muting trips. These travelers’ current transit and car

usage are shown in Figure A.2 in the Appendix.

Most travelers use private vehicles regardless of their

trip purpose. Several ride public transit for work trips

and very few for nonwork purposes.

Figure 4. (A) Distribution of walking impedance scores for each user, including both survey responses and predicted scores from support

vector regressor. The red dot in each boxplot represents the mean value. (B) Current walking patterns of travelers for different trip

purposes. Each column in both plots corresponds to the same traveler.
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Inclusive Accessibility

Figures 5 through 7 illustrate the differences in

walking impedance scores and PNA measures for

three representative travelers who are women with

different socioeconomic backgrounds. Both Travelers

1 and 2 are White women in their late twenties,

where the first person has a full-time job with

a moderate income, and the second person has a

part-time job with a low income. Traveler 3 is a

middle-aged Black woman with a high income and

a full-time job. The walking perceptions of these

travelers are, respectively, least, moderate, and

highly sensitive to street characteristics. The red-to-

green color scheme on the left-side figures indicates

the Likert scale (disagree to agree) of walking

impedance scores of Columbus streets. In Figure 5A,

most streets appear in green colors, as this White

woman with moderate income perceives no barriers

to walking except for a few major arterial roads with

higher speeds. In contrast, most streets in Figure 7A

are red colored as this middle-aged Black woman

finds most streets problematic for walking except

those near their fixed activity location. The walking

impedance scores from the low-income White

woman in Figure 6A, however, display significant

variations in their walking preferences. In all cases,

the neighborhood streets near their fixed activity

locations, presumably their home location, are scored

as 5, indicating that they feel comfortable walking

around their known neighborhoods.

The figures on the right represent their accessi-

bility using classic and inclusive PNA measures.

Streets marked in blue, yellow, and red, respec-

tively, outline the classic PNA with hard con-

straints, inclusive PNA with soft spatial constraints,

and inclusive PNA with soft spatial and temporal

constraints. For all cases, the area reachable by the

traveler shrinks as we approach more conservative

measures and include perceptions and time prefer-

ences. The deviation between classic PNA and

inclusive PNA with walking constraints, however,

is minimal for the moderate-income White woman

in Figure 5B. In contrast, it makes a significant dif-

ference when we also include their travel time pref-

erences for transit and walking. Conversely, we can

observe substantial differences in accessible areas

delineated by all three PNA measures for travelers

in Figures 6B and 7B.

Changes in Accessibility Based on the
Considerations of Soft Constraints

Figure 8 shows the areal differences between clas-

sic and inclusive PNAs using a 50-m buffer along

the network, following the same order of travelers as

in Figure 4. As indicated, the area accessible by

inclusive PNAs is smaller compared to the classic

PNA for all travelers. When we only consider the

soft spatial constraints, however, the percentage

Figure 5. (A) Predicted walking impedance scores and (B) classic and inclusive potential network area (PNA) for a representative

traveler (White woman in late twenties with moderate income and working full time) who is less sensitive to the travel environment.
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decline in IPNA 1 increases with the increase in

travelers’ sensitivity to land use and street conditions
(Figure 8A).

On the other hand, the percentage decline in

IPNA 2 is substantial for most travelers, regardless of
their sensitivity levels (Figure 8B). In such cases,
though, the decline in access negatively correlates

with the preferred travel time for transit use and

walking (Figure 9). In other words, regardless of the

perceptions of the built environment and safety, the
accessible area of travelers decline with their low
interest in public transit use and walking. We find

similar results from the analysis using 75-m and 100-
m buffers, indicating the robustness of this analysis
regardless of the buffer distances (Figures A.3 and

A.4 in the Appendix).

Figure 7. (A) Predicted walking impedance scores and (B) classic and inclusive potential network area (PNA) for a representative

traveler (middle-aged Black woman with high income and working full time) who is highly sensitive to the travel environment.

Figure 6. (A) Predicted walking impedance scores and (B) classic and inclusive potential network area (PNA) for a representative

traveler (White woman in late twenties with low income and working part time) who is moderately sensitive to the travel environment.
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Discussion

Summary of Results

This study conceptualizes an inclusive accessibility

measure that integrates physical and perceptual

travel barriers as hard and soft constraints. We pre-

sent a method to measure inclusive accessibility with

a mobility survey data set of forty travelers in

Columbus, Ohio.
Addressing the heterogeneity in travel perceptions

into accessibility measures is a unique contribution

of this study. Despite its significance, personal travel

perceptions are challenging to capture due to their

diverse and distinctive nature. This study overcomes

that problem by applying ML algorithms in quantify-

ing individual-level mobility perceptions along the

network. This method has the potential for predict-

ing perceptions as impedance or friction parameters

in other modeling approaches, such as gravity-based

accessibility measures and spatial interaction models.

The study finds that travelers’ perceptions of

mobility barriers and accessibility are sensitive to dif-

ferent travel environments where the level of sensi-

tivity varies by their current travel patterns and

exposure. On the one hand, travelers who do not

walk much at present feel indifferent to street condi-

tions. These travelers perceive Columbus as walk-

able, perhaps a reflection of their limited exposure

to the current walking environment and unaware-

ness of mobility barriers within Columbus. On the

other hand, travelers with high sensitivity to street

characteristics find Columbus less walkable. These

travelers are mainly interested pedestrians but are

extremely concerned about the surrounding environ-

ments and safety. Their preferred standards for a

walking environment are quite high as they occa-

sionally walk, mainly for noncommuting and recrea-

tional purposes. The rest of the travelers are mainly

frequent pedestrians with a keen interest in active

travel with moderate levels of sensitivity to street

Figure 8. Percentage decline in area accessible by (A) IPNA 1 and (B) IPNA 2, compared to the classic potential network area (PNA).

The accessible area is calculated using a 50-m buffer along the PNA networks.

Figure 9. Correlation between mode-specific travel time preferences and the percentage decline in access using inclusive potential

network area (PNA) with soft spatial and temporal constraints.
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conditions, consistent with findings from past

research (Sener, Eluru, and Bhat 2009; Delbosc and

Currie 2012). They are perhaps aware of the existing
sidewalk and pedestrian safety conditions around

Columbus, and find it less problematic, especially on

frequently visited routes.
Considering travel perceptions and time preferen-

ces makes inclusive access more realistic and sensi-
tive to people’s actual travel by eliminating the

overestimations of classic measures. For all travelers

in this study, this measure is notably smaller than

their classic accessibility, indicating overestimation
in the latter measure. This finding also resonates

with the past accessibility measures using objective

(transport infrastructure and built environment) and
subjective indicators (mobility perceptions and will-

ingness; Gebel et al. 2011; L€attman, Olsson, and

Friman 2016, 2018; Ma and Cao 2019; J. Ryan and
Pereira 2021). Additionally, this study reveals that

the magnitude of the decline from classic to inclu-

sive access varies by travelers’ sensitivity to travel

environments. This variation dissipates, however,
when we consider mode-specific time preferences,

and the corresponding inclusive PNA becomes sig-

nificantly smaller than the classic PNA. This points
out overestimations in the fixed travel time budget

of sixtyminutes assumed in past studies (Ahmed and

Stopher 2014; Lee and Miller 2018, 2019; Qin and
Liao 2021), which we also use to delineate our clas-

sic and first inclusive PNA measures. The actual

length of transit rides and walking trips that people

might prefer to undertake is much shorter than six-
tyminutes, resulting in substantial differences in

classic and the second inclusive PNA measures.
Large-scale application of inclusive access could

identify who experiences limited access to where and

its socioeconomic differences. For instance, the
inclusive accessibility measures for three women

illustrate that Black and low-income women are

more sensitive to the travel environment and experi-
ence higher obstacles than the moderate-income

White woman. This finding underscores accessibility

inequity for travelers with financial limitations and

racially diverse backgrounds. Classic access cannot
address such differences due to the assumption of

homogenous physical and financial abilities, as well

as equal acceptance of risks, standards for comfort,
and other constraints. Urban design and infrastruc-

ture planning in the United States are historically

discriminating, however, leading to substantial

differences in ability and perceptions across individu-

als. Economically and racially disparate communities

tend to have lower expectations for comfort as they

are already served with poor-quality infrastructure

and services and have limited financial ability to

spend on travel. Moreover, marginalized populations,

as well as women, children, and the elderly, are at a

higher risk of physical injuries, assaults, and harass-

ment, making them less acceptant to risks. Our mea-

sure accounting for such income, racial, and

gendered differences in abilities and perceptions

makes it more inclusive to vulnerable communities

who are traditionally overlooked by existing accessi-

bility measures.

Limitations and Future Directions

This study has several limitations related to the

intensity and representativeness of the data. First,

our prediction of walking impedances and accessibil-

ity might be more representative of planned travel,

such as daily work travel and periodical nonwork

travel to essential activities. Second, although we

strive to maintain the reliability of survey responses,

we cannot verify some of these responses, such as if

any travelers’ skewed walking impedance pattern is

not an outcome of their inattentive responses.

Third, the accuracy of network-level soft constraint

measures depends on the sample data size available

from each traveler. This study uses a relatively small

data set collected from each participant due to time

and resource limitations, although a larger data set

might have produced better model performances.

Finally, the transferability of the person-based mod-

els in predicting inclusive access for another traveler

of similar characteristics is yet unknown.

Specifically, the soft constraints models in this study

can predict the mobility perceptions of one individ-

ual traveler without providing further guidance on

translating these models and findings for another

individual outside the sample participants.

Our current application focuses on acceptance

and perceptions of safety and comfort along trans-

portation infrastructure because this is a major factor

influencing social and gender differences in active

travel. This concept and theoretical framework are

applicable in other study contexts, however. Future

studies could consider other personal hard con-

straints, as well as activity-related and area-specific
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soft constraints using the same data collection and

modeling mechanism. Future extensions could also

update the method of including soft constraints into

STP measures and shift from the current determinis-

tic approach to a probabilistic measure with soft

constraints integrated as fuzzy logic.
The inclusive accessibility concept recognizes

hard and soft constraints as limitations associated

with space and time. People also experience certain

hard and soft social constraints in travel and activity

participation, however. For instance, some social

norms and conventions are hard constraints enforc-

ing limited physical access to certain places and

activity participation (e.g., age restrictions for visit-

ing bars and social status for accessing certain elite

clubs). Again, perceptions of social space (e.g.,

neighborhood familiarity, sense of belongingness and

acceptance, and conformity to other lifestyle

choices) are soft constraints that indirectly impede

people from traveling to particular destinations.

Future studies could consider these social constraints

in designing inclusive access.

This research discusses an approach to integrating

soft constraints into person-based STP measures.

Although effective in exploring the heterogeneities

in mobility perceptions, the person-based STP mea-

sure has limited capability to generalize the findings

to larger populations. As a solution, future research

might develop an approach to aggregating person-

based inclusive accessibility into a place-based mea-

sure that evaluates hard and soft constraints using

data from a larger sample of travelers and accounting

for their socioeconomic statuses. Building on our

findings of accessibility inequity experienced by low-

income and racially diverse travelers, future studies

with a larger sample size could help quantify the

intensity of perceived mobility barriers and limited

access among socioeconomically vulnerable commu-

nities. Moreover, future research could use the soft

constraints and their variations across social groups

in demonstrating need-specific transportation net-

work designs with special emphasis on mobility-dis-

advantaged communities.

Conclusion

This study presents the theoretical background of

a novel inclusive accessibility concept and an exam-

ple method for operationalizing the concept. We

develop the person-based inclusive STP that

converges space–time limitations as hard constraints

and travel perceptions along transportation networks

as soft constraints. The results highlight significant

variations in the perceived mobility barriers and cor-

responding inclusive accessibility measures across

individuals depending on their current mobility pat-

tern and exposure. The shift from classic to inclusive

access lowers potential mobility, identifies a person’s

physically and psychologically accessible geographic

space, and makes the measure more sensitive to

actual travel.
The inclusive accessibility approach might help us

locate the inequalities around the urban transporta-

tion system from a mobility justice perspective.

Researchers and professionals can use this method to

understand the spatial differences in perceived

mobility barriers and accessibility across socioeco-

nomically diverse communities. Inclusive accessibil-

ity could also serve as a performance indicator in

evaluating potential transportation investments and

identifying their beneficiaries. Thus, inclusive acces-

sibility can facilitate the decision-making process

while designing root-level, community-specific trans-

portation plans that aim to replicate personalized

and community-specific mobility needs and elimi-

nate their perceived barriers.
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Appendix

Table A.1. The tuned hyperparameters and mean
absolute errors (MAEs) in the train and test set of

support vector regressor models

Traveler Gamma C Epsilon

MAE in

train set

MAE in

test set

1 0.01 10 0.01 0.548219 0.612474

2 0.001 100 0.01 0.353165 0.405908

3 0.5 1 0.1 0.394138 0.474494

4 1.00E-04 0.1 0.001 0.743163 0.722403

5 0.2 1 0.001 0.453197 0.692305

6 0.001 100 0.001 0.288296 0.375987

7 0.5 1 0.1 0.520531 0.963988

8 0.2 1 0.1 0.371523 0.674623

9 0.1 100 0.001 0.145183 0.866691

10 0.001 100 0.01 0.665485 0.528593

11 0.1 10 0.1 0.514909 1.097387

12 0.01 100 0.001 0.476775 0.759367

13 0.001 10 0.001 0.377839 0.413945

14 0.5 0.1 0.1 0.568513 0.475638

15 0.5 1 0.001 0.338338 0.724361

16 0.001 100 0.001 0.696467 1.178460

17 0.5 10 0.01 0.223709 1.056023

18 0.1 1 0.1 0.943697 1.303788

19 0.5 0.1 0.01 0.775269 0.926742

20 0.001 100 0.001 0.622853 0.663985

21 0.01 10 0.1 0.361629 0.389462

22 0.1 10 0.1 0.405359 1.314321

23 0.1 10 0.01 0.337907 0.733076

24 0.001 10 0.01 0.642426 0.709012

25 1.00E-04 100 0.001 0.66628 0.546868

26 0.5 10 0.1 0.17942 0.815692

27 0.1 10 0.1 0.417582 0.658755

28 0.5 1 0.1 0.377138 0.524538

29 0.001 100 0.01 0.432898 0.643338

30 0.2 10 0.001 0.308959 0.905198

31 0.5 1 0.1 0.385538 0.793541

32 0.1 10 0.01 0.261958 0.827417

33 0.01 100 0.01 0.435514 0.825864

34 0.1 10 0.001 0.260893 0.480277

35 0.1 10 0.1 0.457476 1.295155

36 0.01 100 0.01 0.538089 0.845017

37 0.001 100 0.1 0.853048 1.024896

38 0.01 1 0.01 0.710174 1.040916

39 0.01 100 0.1 0.340032 0.573382

40 0.2 1 0.001 0.361875 0.509135
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Table A.2. The tuned hyperparameters and mean absolute errors (MAEs) in the train and test set of random forest
models.

Traveler N estimators

Minimum

samples split

Minimum

samples leaf

Maximum

features

Maximum

depth Bootstrap

MAE in

train set

MAE in

test set

1 400 5 4 sqrt 100 True 0.560306 0.493528

2 1,200 10 1 auto 110 True 0.240836 0.658693

3 2,000 10 4 sqrt 20 True 0.561526 0.561008

4 1,200 10 4 sqrt 50 True 0.632867 0.879767

5 1,200 10 1 auto 110 True 0.360545 0.752029

6 1,400 10 2 auto 40 False 0.200783 0.516286

7 400 5 4 sqrt 100 True 0.697499 0.817775

8 1,800 5 1 auto 70 True 0.285957 0.568124

9 1,000 5 2 auto 10 True 0.331854 0.639198

10 1,000 5 2 auto 10 True 0.331658 0.824994

11 1,600 2 1 auto 110 True 0.327906 1.135370

12 1,600 2 4 auto 60 False 0.473298 0.593175

13 1,200 10 4 sqrt 50 True 0.298236 0.470138

14 1,800 10 1 sqrt 110 False 0.323767 0.475883

15 200 5 1 sqrt 90 False 0.216421 0.564069

16 200 5 1 sqrt 90 False 0.272767 0.998911

17 400 5 4 sqrt 100 True 0.672073 0.936612

18 1,000 10 4 auto 80 False 0.552993 1.132590

19 1,000 10 2 auto 40 False 0.513075 0.773707

20 1,600 10 2 sqrt 90 True 0.590816 0.723479

21 600 5 2 auto 20 True 0.227694 0.448239

22 1,600 10 2 sqrt 90 True 0.706948 0.646815

23 400 2 1 sqrt 70 False 0.036505 0.749458

24 200 5 1 sqrt 90 False 0.199720 0.609531

25 400 5 4 sqrt 100 True 0.590769 0.680762

26 1,600 2 1 auto 110 True 0.222439 0.767510

27 1,600 2 1 auto 110 True 0.218768 0.686326

28 400 2 1 sqrt 70 False 0.002094 0.620917

29 400 10 1 auto 100 True 0.33394 0.782547

30 1,200 2 2 sqrt 30 False 0.37333 0.922417

31 1,000 5 2 auto 10 True 0.347448 0.717737

32 400 10 1 auto 100 True 0.375028 0.665327

33 1,200 10 1 sqrt 40 False 0.362406 0.807358

34 2,000 2 1 sqrt 70 True 0.206354 0.483224

35 400 2 1 sqrt 110 True 0.354000 0.872120

36 400 10 1 auto 100 True 0.468183 0.696857

37 400 2 1 sqrt 70 False 0.000473 1.127262

38 1,800 5 4 sqrt 70 False 0.558743 0.865433

39 600 10 2 sqrt 30 False 0.294457 0.631404

40 800 2 4 auto 30 True 0.381014 0.418687
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Figure A.1. Distribution of walking impedance scores for each user, including both survey responses and predicted scores from random

forest models. The order of travelers follows the same order presented in Figure 4.

Figure A.2. Transit and car use patterns of travelers for different trip purposes.

Figure A.3. Percentage decline in area accessible by IPNA 1 and IPNA 2, compared to the classic potential network area (PNA). The

accessible area is calculated using a 75-m buffer along the PNAs.
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Figure A.4. Percentage decline in area accessible by IPNA 1 and IPNA 2, compared to the classic potential network area (PNA). The

accessible area is calculated using a 100-m buffer along the PNAs.
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